[1] Remonti L R, Kramer C K, Leitão C B et al. Thyroid ultrasound features and risk of carcinoma: a systematic review and meta-analysis of observational studies[J]. Thyroid, 25, 538-550(2015).
[2] Chen W, Zheng R, Baade P D et al. Cancer statistics in China, 2015[J]. CA: A Cancer Journal for Clinicians, 66, 115-132(2016).
[3] Yan W, Tang Y, Zhang Y Z et al. Deep learning in digital pathology analysis[J]. Chinese Journal of Biomedical Engineering, 37, 95-105(2018).
[4] Sun Y C, Liu Y H, Zhang D F et al. Diagnosis method of diabetic retinopathy based on deep learning[J]. Laser & Optoelectronics Progress, 57, 241013(2020).
[5] Ren S Q, He K M, Girshick R et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).
[6] He K M, Gkioxari G, Dollár P et al. Mask R-CNN[C], 2980-2988(2017).
[7] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C], 3431-3440(2015).
[8] Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation[M]. Navab N, Hornegger J, Wells W M, et al. Medical image computing and computer-assisted intervention-MICCAI 2015. Lecture notes in computer science, 9351, 234-241(2015).
[9] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 60, 84-90(2017).
[10] Redmon J, Divvala S, Girshick R et al. You only look once: unified, real-time object detection[C], 779-788(2016).
[11] Liu W, Anguelov D, Erhan D et al. SSD: single shot MultiBox detector[M]. Leibe B, Matas J, Sebe N, et al. Computer vision-ECCV 2016. Lecture notes in computer science, 9905, 21-37(2016).
[12] Ma J, Wu F, Jiang T et al. Cascade convolutional neural networks for automatic detection of thyroid nodules in ultrasound images[J]. Medical Physics, 44, 1678-1691(2017).
[13] Xie S N, Yu J, Liu T J et al. Thyroid nodule detection in ultrasound images with convolutional neural networks[C], 1442-1446(2019).
[14] Jiang C, Hu A M, He W. Convolutional-neural-network based license plate location algorithm[J]. Laser & Optoelectronics Progress, 57, 021010(2020).
[15] Anderson P, He X D, Buehler C et al. Bottom-up and top-down attention for image captioning and visual question answering[C], 6077-6086(2018).
[16] Jiang H Z, Learned-Miller E. Face detection with the faster R-CNN[C], 650-657(2017).
[17] Fang H, Gong L, Xu Y et al. Reliable thyroid carcinoma detection with real-time intelligent analysis of ultrasound images[J]. Ultrasound in Medicine & Biology, 47, 590-602(2021).
[18] Lin T Y, Dollár P, Girshick R et al. Feature pyramid networks for object detection[C], 936-944(2017).
[19] Yu X, Wang H J, Ma L Y. Detection of thyroid nodules with ultrasound images based on deep learning[J]. Current Medical Imaging Reviews, 16, 174-180(2020).
[20] Davies L, Welch H G. Increasing incidence of thyroid cancer in the United States, 1973-2002[J]. JAMA, 295, 2164-2167(2006).
[21] Wang Y H, Ke W, Wan P. A method of ultrasonic image recognition for thyroid papillary carcinoma based on deep convolution neural network[J]. NeuroQuantology, 16, 757-768(2018).
[22] Zeiler M D, Fergus R. Visualizing and understanding convolutional networks[M]. Fleet D, Pajdla T, Schiele B, et al. Computer vision-ECCV 2014. Lecture notes in computer science, 9905, 818-833(2014).
[23] Li H, Weng J, Shi Y et al. An improved deep learning approach for detection of thyroid papillary cancer in ultrasound images[J]. Scientific Reports, 8, 6600(2018).
[24] Abdolali F, Kapur J, Jaremko J L et al. Automated thyroid nodule detection from ultrasound imaging using deep convolutional neural networks[J]. Computers in Biology and Medicine, 122, 103871(2020).
[25] Wang L, Yang S, Yang S et al. Automatic thyroid nodule recognition and diagnosis in ultrasound imaging with the YOLOv2 neural network[J]. World Journal of Surgical Oncology, 17, 12(2019).
[26] Ma J, Duan S, Zhang Y et al. Efficient deep learning architecture for detection and recognition of thyroid nodules[J]. Computational Intelligence and Neuroscience, 2020, 1242781(2020).
[27] Song W F, Li S, Liu J et al. Multitask cascade convolution neural networks for automatic thyroid nodule detection and recognition[J]. IEEE Journal of Biomedical and Health Informatics, 23, 1215-1224(2019).
[28] Liu T J, Guo Q Q, Lian C F et al. Automated detection and classification of thyroid nodules in ultrasound images using clinical-knowledge-guided convolutional neural networks[J]. Medical Image Analysis, 58, 101555(2019).
[29] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[EB/OL]. https://arxiv.org/abs/1409.1556
[30] Ying X, Yu Z H, Yu R G et al. Thyroid nodule segmentation in ultrasound images based on cascaded convolutional neural network[M]. Cheng L, Leung A C S, Ozawa S. Neural information processing. Lecture notes in computer science, 11306, 373-384(2018).
[31] Zhou S J, Wu H, Gong J et al. Mark-guided segmentation of ultrasonic thyroid nodules using deep learning[C], 21-26(2018).
[32] Chu C, Zheng J H, Zhou Y. Ultrasonic thyroid nodule detection method based on U-Net network[J]. Computer Methods and Programs in Biomedicine, 199, 105906(2021).
[33] Buda M, Wildman-Tobriner B, Castor K et al. Deep learning-based segmentation of nodules in thyroid ultrasound: improving performance by utilizing markers present in the images[J]. Ultrasound in Medicine & Biology, 46, 415-421(2020).
[34] Kumar V, Webb J, Gregory A et al. Automated segmentation of thyroid nodule, gland, and cystic components from ultrasound images using deep learning[J]. IEEE Access, 8, 63482-63496(2020).
[35] Koundal D, Gupta S, Singh S. Survey of computer-aided diagnosis of thyroid nodules in medical ultrasound images[M]. Meghanathan N, Nagamalai D, Chaki N. Advances in computing and information technology. Advances in intelligent systems and computing, 177, 459-467(2013).
[36] Chang C Y, Chen S J, Tsai M F. Application of support-vector-machine-based method for feature selection and classification of thyroid nodules in ultrasound images[J]. Pattern Recognition, 43, 3494-3506(2010).
[37] Bibicu D, Moraru L, Biswas A. Thyroid nodule recognition based on feature selection and pixel classification methods[J]. Journal of Digital Imaging, 26, 119-128(2013).
[38] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C], 770-778(2016).
[39] Szegedy C, Liu W, Jia Y Q et al. Going deeper with convolutions[C], 15523970(2015).
[40] Liu T J, Xie S N, Zhang Y K et al. Feature selection and thyroid nodule classification using transfer learning[C], 1096-1099(2017).
[41] Liu T J, Xie S N, Yu J et al. Classification of thyroid nodules in ultrasound images using deep model based transfer learning and hybrid features[C], 919-923(2017).
[42] Chi J N, Walia E, Babyn P et al. Thyroid nodule classification in ultrasound images by fine-tuning deep convolutional neural network[J]. Journal of Digital Imaging, 30, 477-486(2017).
[43] Chi J N, Yu X S, Zhang Y F. Thyroid nodule malignantrisk detection in ultrasound image by fusing deep and texture features[J]. Journal of Image and Graphics, 23, 1582-1593(2018).
[44] Moussa O, Khachnaoui H, Guetari R et al. Thyroid nodules classification and diagnosis in ultrasound images using fine-tuning deep convolutional neural network[J]. International Journal of Imaging Systems and Technology, 30, 185-195(2020).
[45] Song J, Chai Y J, Masuoka H et al. Ultrasound image analysis using deep learning algorithm for the diagnosis of thyroid nodules[J]. Medicine, 98, e15133(2019).
[46] Szegedy C, Vanhoucke V, Ioffe S et al. Rethinking the Inception architecture for computer vision[C], 2818-2826(2016).
[47] Guan Q, Wang Y, Du J et al. Deep learning based classification of ultrasound images for thyroid nodules: a large scale of pilot study[J]. Annals of Translational Medicine, 7, 137(2019).
[48] Zhu Y, Fu Z, Fei J. An image augmentation method using convolutional network for thyroid nodule classification by transfer learning[C], 1819-1823(2017).
[49] Zhang F, Weng Y J, Su J M et al. Classification of thyroid nodule images based on TV model and GoogLeNet[J]. Application Research of Computers, 37, 421-422, 417(2020).
[50] Wang L T, Zhang L, Zhu M J et al. Automatic diagnosis for thyroid nodules in ultrasound images by deep neural networks[J]. Medical Image Analysis, 61, 101665(2020).
[51] Szegedy C, Ioffe S, Vanhoucke V et al. Inception-ResNet and the impact of residual connections on learning[EB/OL]. https://arxiv.org/abs/1602.07261
[52] Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C], 6517-6525(2017).
[53] Redmon J, Farhadi A. Yolov3: an incremental improvement[EB/OL]. https://arxiv.org/abs/1804.02767
[54] Ma J L, Wu F, Zhu J et al. A pre-trained convolutional neural network based method for thyroid nodule diagnosis[J]. Ultrasonics, 73, 221-230(2017).
[55] Zheng B, Yang C, Ma X P et al. Malignant thyroid nodule detection based on circular convolutional neural network[J]. Laser & Optoelectronics Progress, 56, 241003(2019).
[56] Chollet F. Xception: deep learning with depthwise separable convolutions[C], 1800-1807(2017).
[57] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 9, 1735-1780(1997).
[58] Li X C, Zhang S, Zhang Q et al. Diagnosis of thyroid cancer using deep convolutional neural network models applied to sonographic images: a retrospective, multicohort, diagnostic study[J]. The Lancet Oncology, 20, 193-201(2019).
[59] Liu Z, Zhong S B, Liu Q et al. Thyroid nodule recognition using a joint convolutional neural network with information fusion of ultrasound images and radiofrequency data[J]. European Radiology, 31, 5001-5011(2021).
[60] Lawhern V J, Solon A J, Waytowich N R et al. EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces[J]. Journal of Neural Engineering, 15, 056013(2018).
[61] Liang J W, Qiu T R, Zhou A Y et al. Ensemble of multiscale fine-tuning convolutional neural networks for recognition of benign and malignant thyroid nodules[J]. Journal of Computer-Aided Design & Computer Graphics, 33, 81-91(2021).
[62] Zhou Y, Chen H J, Li Y F et al. Multi-task learning for segmentation and classification of tumors in 3D automated breast ultrasound images[J]. Medical Image Analysis, 70, 101918(2021).
[63] Hoang J K, Lee W K, Lee M et al. US features of thyroid malignancy: pearls and pitfalls[J]. Radiographics, 27, 847-860(2007).
[64] Chen K Y, Chen C N, Wu M H et al. Computerized detection and quantification of microcalcifications in thyroid nodules[J]. Ultrasound in Medicine & Biology, 37, 870-878(2011).
[65] Choi W J, Park J S, Kim K G et al. Computerized analysis of calcification of thyroid nodules as visualized by ultrasonography[J]. European Journal of Radiology, 84, 1949-1953(2015).
[66] Han X T. Study on computer aided diagnosis of thyroid nodules in ultrasound image[D](2016).
[67] Zuo D Q, Han L, Chen K et al. Extraction of calcification in ultrasonic images based on convolution neural network[J]. Journal of Biomedical Engineering, 35, 679-687(2018).
[68] Zhang L Q, Chen K, Han L et al. Recognition of calcifications in thyroid nodules based on attention-gated collaborative supervision network of ultrasound images[J]. Journal of X-Ray Science and Technology, 28, 1123-1139(2020).
[69] Ye C, Zhao Z P, Ma X P et al. Thyroid nodule detection method based on CNN and transfer learning[J]. Computer Engineering and Applications, 54, 127-132(2018).
[70] Zhao Z, Ye C, Hu Y et al. Cascade and fusion of multitask convolutional neural networks for detection of thyroid nodules in contrast-enhanced CT[J]. Computational Intelligence and Neuroscience, 2019, 7401235(2019).
[71] Yang F, Wei G H, Cao H et al. Research progress on content-based medical image retrieval[J]. Laser & Optoelectronics Progress, 57, 060003(2020).