• Infrared and Laser Engineering
  • Vol. 48, Issue 2, 221002 (2019)
Zhou Zhenhui1、2、3、*, Xu Xiangyan1、3, Liu Hulin1、3, Li Yan4, Lu Yu1、3, Qian Sen5、6, Wei Yonglin1、3, He Kai1、3, Sai Xiaofeng1、3, Tian Jinshou1、3, and Chen Ping1、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • 5[in Chinese]
  • 6[in Chinese]
  • show less
    DOI: 10.3788/irla201948.0221002 Cite this Article
    Zhou Zhenhui, Xu Xiangyan, Liu Hulin, Li Yan, Lu Yu, Qian Sen, Wei Yonglin, He Kai, Sai Xiaofeng, Tian Jinshou, Chen Ping. Simulation of InP/In0.53Ga0.47As/InP infrared photocathode with high quantum yield[J]. Infrared and Laser Engineering, 2019, 48(2): 221002 Copy Citation Text show less
    References

    [1] Yang M Z, Jin M C, Chang B K. Spectral response of InGaAs photocathodes with different emission layers [J]. Applied Optics, 2016, 55(31): 8732-8737.

    [2] Jin M C, Chen X L, Hao G H, et al. Research on quantum efficiency for reflection-mode InGaAs photocathodes with thin emission layer [J]. Applied Optics, 2015, 54(28): 8332-8338.

    [3] Matsuyama T, Mukai M, Horinaka H, et al. High luminescence polarization of InGaAs-AlGaAs strained layer superlattice fabricated as a photocathode of spin-polarized electron source [J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2001, 40(11): 6468-6472.

    [4] Yang M Z, Jin M C. Photoemission of reflection-mode InGaAs photocathodes after Cs,O activation and recaesiations [J]. Optical Materials, 2016, 62: 499-504.

    [5] Smirnov K , Medzakovskiy V I, Davydov V V, et al. High sensitive InP emitter for InP/InGaAs heterostructures[J]. Journal of Physics: Conference Series, 2017, 917(6): 062019.

    [6] Sachno V, Dolgyh A, Loctionov V. Image intensifier tube (I2) with 1.06-μm InGaAs-photocathode[C]//SPIE, 2005, 5834: 169-176.

    [7] Escher J S, Gregory P E, Hyder S B, et al. Transferred-electron photoemission to 1.65 μm from InGaAs [J]. Journal of Applied Physics, 1978, 49(4): 2591-2592.

    [8] Li Jinmin, Guo Lihui, Hou Xun. Theoretical calculation of quantum efficiency for field-assisted InP/InGaAsP semiconductor photocathodes [J]. Acta Physica Sinica, 1992, 41(10): 1672-1678. (in Chinese)

    [9] Jin M C, Chang B K, Cheng H C, et al. Research on quantum efficiency of transmission-mode InGaAs photocathode [J]. Optik, 2014, 125(10): 2395-2399.

    [10] Li Jinmin, Guo Lihui, Hou Xun. Calculation of time response for field-assisted InP/InGaAsP/InP semiconductor photocathodes [J]. Chinese Science Bulletin, 1992, 37(7): 598-601. (in Chinese)

    [11] Sun Qiaoxia, Xu Xiangyan, An Yingbo, et al. Numerical study on time response characteristics of InP/InGaAs/InP infrared photocathode [J]. Infrared and Laser Engineering, 2013, 42(12): 3163-3167. (in Chinese)

    [12] Zou Jijun, Chang Benkang, Yang Zhi. Theoretical calculation of quantum yield for exponential-doping GaAs photocathodes [J]. Acta Physica Sinica, 2007, 56(5): 2992-2997.

    [13] Escher J S, Gregory P E, Maloney T J. Hot-electron attenuation length in Ag/InP Schottky barriers[J]. Journal of Vacuum Science and Technology, 1979, 16(5): 1394-1397.

    [14] Su C Y, Spicer W E, Lindau I. Photoelectron spectroscopic determination of the structure of (Cs,O) activated GaAs (110) surfaces [J]. Journal of Applied Physics, 1983, 54(3): 1413-1422.

    [15] Levinshtein M, Rumyantsev S, Shur M. Handbook Series on Semiconductor Parameters[M]. 2nd ed. London: World Scientific, 1999: 62-88.

    [16] Simon S M. Physics of Semiconductor Devices[M]. New York: Wiley, 1980.

    [17] Levinshtein M, Rumyantsev S, Shur M. Handbook Series on Semiconductor Parameters[M]. 1st ed. London: World Scientific, 1999.

    [18] Jiao Gangcheng, Xu Xiaobing, Zhang Liandong, et al. InGaAs/InP photocathode grown by solid-source MBE [C]//SPIE, 2013, 8912: 891216.

    [19] Chinen Kouyu, Minoru Niigaki, Masahiro Miyao, et al. GaAs transmission photocathode grown by MBE[J]. Japanese Journal of Applied Physics, 1980, 19(11): 703-706.

    [20] Narayanan A A, Fisher D G. Negative electron affinity gallium arsenide photocathode grown by MBE[J]. Appl Phys, 1984, 56(6): 1886-1887.

    [21] Bourree L E, Chasse D R, Thamban P L, et al. MBE grown InGaAs photocathodes[C]//SPIE, 2003, 4796: 1-10.

    [22] Jin M C, Chang B K, Guo J, et al. Theoretical study on electronic and optical properties of Zn-doped In0.25Ga0.75As photocathodes[J]. Optical Review, 2016, 23(1): 84-91.

    [23] Guo Jing, Chang Benkang, Wang Honggang, et al. Near-infrared photocathode In0.53Ga0.47As doped with zinc: A first principle study[J]. Optik, 2016, 127(3): 1268-1271.

    Zhou Zhenhui, Xu Xiangyan, Liu Hulin, Li Yan, Lu Yu, Qian Sen, Wei Yonglin, He Kai, Sai Xiaofeng, Tian Jinshou, Chen Ping. Simulation of InP/In0.53Ga0.47As/InP infrared photocathode with high quantum yield[J]. Infrared and Laser Engineering, 2019, 48(2): 221002
    Download Citation