• Laser & Optoelectronics Progress
  • Vol. 55, Issue 7, 71602 (2018)
Zhu Yinlong1、2、3, Qin Jun1、2、3, Zhang Yan1、2、3, Liang Xiao1、2、3, Wang Chuangtang1、2、3, and Bi Lei1、2、3、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/lop55.071602 Cite this Article Set citation alerts
    Zhu Yinlong, Qin Jun, Zhang Yan, Liang Xiao, Wang Chuangtang, Bi Lei. Electric-Field Control of Magneto-Optical Kerr Effect and Resistance of Au/Ti/Y2CeFe5O12 Structure[J]. Laser & Optoelectronics Progress, 2018, 55(7): 71602 Copy Citation Text show less
    References

    [1] Bi L, Hu J, Jiang P, et al. On-chip optical isolation in monolithically integrated non-reciprocal optical resonators[J]. Nature Photonics, 2011, 5(12): 758-762.

    [2] Huang D N, Pintus P, Zhang C, et al. Dynamically reconfigurable integrated optical circulators[J]. Optica, 2017, 4(1): 23-30.

    [3] Zvezdin A K, Kotov V A. Modern magnetooptics and magnetooptical materials[M]. Bristol: CRC Press, 1997.

    [4] Huang D N, Pintus P, Zhang C, et al. Electrically driven and thermally tunable integrated optical isolators for silicon photonics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(6): 4403408.

    [5] Cai W, Xing J H, Yang Z Y, et al. Mechanism analysis of Faraday effect based on magneto-optic coupling[J]. Laser & Optoelectronics Progress, 2017, 54(6): 062601.

    [6] Liu M, Howe B M, Grazulis L, et al. Voltage-impulse-induced non-volatile ferroelastic switching of ferromagnetic resonance for reconfigurable magnetoelectric microwave devices[J]. Advanced Materials, 2013, 25(35): 4886-4892.

    [7] Matsukura F, Tokura Y, Ohno H. Control of magnetism by electric fields[J]. Nature Nanotechnology, 2015, 10(3): 209-220.

    [8] Shiota Y, Nozaki T, Bonell F, et al. Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses[J]. Nature Materials, 2012, 11(1): 39-43.

    [9] Tsymbal E Y. Spintronics: Electric toggling of magnets[J]. Nature Materials, 2012, 11(1): 12-13.

    [10] Wang K L, Kou X, Upadhyaya P, et al. Electric-field control of spin-orbit interaction for low-power spintronics[J]. Proceedings of the IEEE, 2016, 104(10): 1974-2008.

    [11] Zhang N, Zhang B, Yang M Y, et al. Progress of electrical control magnetization reversal and domain wall motion[J]. Acta Physica Sinica, 2017, 66(2): 027501.

    [12] Yang Z, Zhang Y, Zhou Q Q, et al. Electric-field control of magnetic properties of Fe3O4 single-crystal film investigated by micro-magnetic simulation[J]. Acta Physica Sinica, 2017, 66(13): 137501.

    [13] Dong S, Liu J M, Cheong S W, et al. Multiferroic materials and magnetoelectric physics: Symmetry, entanglement, excitation, and topology[J]. Advances in Physics, 2015, 64(5): 519-626.

    [14] Lu N P, Zhang P F, Zhang Q H, et al. Electric-field control of tri-state phase transformation with a selective dual-ion switch[J]. Nature, 2017, 546(7656): 124-128.

    [15] Bauer U, Yao L, Tan A J, et al. Magneto-ionic control of interfacial magnetism[J]. Nature Materials, 2015, 14(2): 174-181.

    [16] Gilbert D A, Grutter A J, Arenholz E, et al. Structural and magnetic depth profiles of magneto-ionic heterostructures beyond the interface limit[J]. Nature Communications, 2016, 7: 12264.

    [17] Radaelli G, Petti D, Plekhanov E, et al. Electric control of magnetism at the Fe/BaTiO3 interface[J]. Nature Communications, 2014, 5: 3404.

    [18] Qiu X P, Narayanapillai K, Wu Y, et al. Spin-orbit-torque engineering via oxygen manipulation[J]. Nature Nanotechnology, 2015, 10(4): 333-338.

    [19] Newhouse-Illige T, Liu Y H, Xu M, et al. Voltage-controlled interlayer coupling in perpendicularly magnetized magnetic tunnel junctions[J]. Nature Communications, 2017, 8: 15232.

    [20] Bi C, Liu Y H, Newhouse-Illige T, et al. Reversible control of Co magnetism by voltage-induced oxidation[J]. Physical Review Letters, 2014, 113(26): 267202.

    [21] Zhang Y, Wang C T, Liang X, et al. Enhanced magneto-optical effect in Y1.5Ce1.5Fe5O12 thin films deposited on silicon by pulsed laser deposition[J]. Journal of Alloys and Compounds, 2017, 703: 591-599.

    [22] Chen J D, Liu Z Y. Dielectric physics[M]. Beijing: China Machine Press, 1982: 217-219.

    [23] Meyer R, Schloss L, Brewer J, et al. Oxide dual-layer memory element for scalable non-volatile cross-point memory technology[C]. Proceedings of 9th Annual Non-Volatile Memory Technology Symposium, 2008: 54-58.

    [24] Meyer R, Liedtke R, Waser R. Oxygen vacancy migration and time-dependent leakage current behavior of Ba0.3Sr0.7TiO3 thin films[J]. Applied Physics Letters, 2005, 86(11): 112904.

    [25] Larentis S, Nardi F, Balatti S, et al. Resistive switching by voltage-driven ion migration in bipolar RRAM-part II: modeling[J]. IEEE Transactions on Electron Devices, 2012, 59(9): 2468-2475.

    [26] Gomi M, Furuyama H, Abe M. Strong magneto-optical enhancement in highly Ce-substituted iron-garnet films prepared by sputtering[J]. Journal of Applied Physics, 1991, 70(11): 7065-7067.

    [27] Vasili H B, Casals B, Cichelero R, et al. Direct observation of multivalent states and 4f →3d charge transfer in Ce-doped yttrium iron garnet thin films[J]. Physical Review B, 2017, 96(1): 014433.

    [28] Liang X, Xie J L, Deng L J, et al. First principles calculation on the magnetic, optical properties and oxygen vacancy effect of CexY3-xFe5O12[J]. Applied Physics Letters, 2015, 106(5): 052401.

    Zhu Yinlong, Qin Jun, Zhang Yan, Liang Xiao, Wang Chuangtang, Bi Lei. Electric-Field Control of Magneto-Optical Kerr Effect and Resistance of Au/Ti/Y2CeFe5O12 Structure[J]. Laser & Optoelectronics Progress, 2018, 55(7): 71602
    Download Citation