• Infrared and Laser Engineering
  • Vol. 48, Issue 6, 603004 (2019)
Deng Chao1、2, Suo Jinli1, Zhang Zhili2, and Dai Qionghai1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/irla201948.0603004 Cite this Article
    Deng Chao, Suo Jinli, Zhang Zhili, Dai Qionghai. Coding and decoding of optical information in single-pixel imaging[J]. Infrared and Laser Engineering, 2019, 48(6): 603004 Copy Citation Text show less
    References

    [1] Zhao C, Gong W, Chen M, et al. Ghost imaging lidar via sparsity constraints[J]. Appl Phys Lett, 2012, 101(14): 141123.

    [2] Meyers R E, Deacon K S, Shih Y. Turbulence-free ghost imaging[J]. Appl Phys Lett, 2011, 98(11): 111115.

    [3] Magana-Loaiza O S, Howland G A, Malik M, et al. Compressive object trackingusing entangled photons[J]. Appl Phys Lett, 2013, 102(23): 231104.

    [4] Clemente P, Durán V, Tajahuerce E, et al. Optical encryption based on computational ghost imaging[J]. Opt Lett, 2010, 35(14): 2391-2393.

    [5] Tian N, Guo Q, Wang A, et al. Fluorescence ghost imaging with pseudothermallight[J]. Optics Letters, 2011, 36(16):3302-3304.

    [6] Sun B, Edgar M P, Bowman R, et al. 3D computational imaging with single-pixeldetectors[J]. Science, 2013, 340(6134): 844-847.

    [7] Pittman T, Shih Y, Strekalov D, et al. Optical imaging by means of two-photonquantum entanglement[J]. Phys Rev A, 1995, 52(5): R3429.

    [8] Strekalov D, Sergienko A, Klyshko D, et al. Observation of two-photon "ghost"interference and diffraction[J]. Phys Rev Lett, 1995, 74(18): 3600.

    [9] Bennink R S, Bentley S J, Boyd R W. "Two-photon" coincidence imaging witha classical source[J]. Phys Rev Lett, 2002, 89(11): 113601.

    [10] Valencia A, Scarcelli G, D′Angelo M, et al. Two-photon imaging with thermallight[J]. Phys Rev Lett, 2005, 94(6):063601.

    [11] GattiA, Brambilla E, Bache M, et al. Ghost imaging with thermal light:comparing entanglement and classicalcorrelation[J]. Phys Rev Lett, 2004, 93(9): 093602.

    [12] Zhang D, Zhai Y H, Wu L A, et al. Correlated two-photon imaging with truethermal light[J]. Opt Lett, 2005, 30(18): 2354-2356.

    [13] Ferri F, Magatti D, Gatti A, et al. High-resolution ghost image and ghostdiffraction experiments with thermal light[J]. Physical Review Letters, 2005, 94(18): 183602.

    [14] Shapiro J H. Computational ghost imaging[J]. Phys Rev A, 2008, 78(6): 061802.

    [15] Takhar D, Laska J N, Wakin M B, et al. A new compressive imaging cameraarchitecture using optical-domain compression[C]//Computational Imaging IV, 2006, 6065: 606509.

    [16] Bromberg Y, Katz O, Silberberg Y. Ghost imaging with a single detector[J]. Physical Review A, 2009, 79(5): 053840.

    [17] Gong W, Han S. A method to improve the visibility of ghost images obtained by thermal light[J]. Physics Letters A, 2010, 374(8): 1005-1008.

    [18] Ferri F, Magatti D, Lugiato L A, et al. Differential ghost imaging[J]. Physical Review Letters, 2010, 104(25): 253603.

    [19] Sun B, Welsh S S, Edgar M P, et al. Normalized ghost imaging[J]. Optics Express, 2012, 20(15): 16892-16901.

    [20] Deng C, Suo J, Wang Y, et al. Single-shot thermal ghost imaging usingwavelength-division multiplexing[J]. Appl Phys Lett, 2018, 112(5): 051107.

    [21] Guo K, Jiang S, Zheng G. Multilayer fluorescence imaging on a single-pixeldetector[J]. Biomed Opt Express, 2016, 7(7): 2425-2431.

    [22] Wang W, Hu X, Liu J, et al. Gerchberg-Saxton-like ghost imaging[J]. Optics Express, 2015, 23(22): 28416-28422.

    [23] Katz O, Bromberg Y, Silberberg Y. Compressive ghost imaging[J]. Appl Phys Lett, 2009, 95(13): 131110.

    [24] Aβmann M, Bayer M. Compressive adaptive computational ghost imaging[J]. Scientific Reports, 2013, 3: 1545.

    [25] Candès E J, Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30.

    [26] Adelson E H, Bergen J R. The plenoptic function and the elements of early vision[J]. Computational Models of Visual Processing, 1991: 3-20.

    [27] Clemente P, Durán V, Tajahuerce E, et al. Compressive holography with a single-pixel detector[J]. Optics Letters, 2013, 38(14): 2524-2527.

    [28] Kandjani S A, Kheradmand R, Dadashzadeh N. Ghost imaging with pseudo-thermal light[C]//2011 13th International Conference on Transparent Optical Networks. IEEE, 2011: 1-4.

    [29] Durán V, Clemente P, Fernández-Alonso M, et al. Single-pixel polarimetric imaging[J]. Optics Letters, 2012, 37(5): 824-826.

    [30] Soldevila F, Irles E, Durán V, et al. Single-pixel polarimetric imaging spectrometer by compressive sensing[J]. Applied Physics B, 2013, 113(4): 551-558.

    [31] Shrekenhamer D, Watts C M, Padilla W J. Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator[J]. Optics Express, 2013, 21(10): 12507-12518.

    [32] Soldevila F, Salvador-Balaguer E, Clemente P, et al. High-resolution adaptive imaging with a single photodiode[J]. Scientific Reports, 2015, 5: 14300.

    [33] Yu W K, Liu X F, Yao X R, et al. Complementary compressive imaging for the telescopic system[J]. Scientific Reports, 2014, 4: 5834.

    [34] Ryczkowski P, Barbier M, Friberg A T, et al. Ghost imaging in the time domain[J]. Nature Photonics, 2016, 10(3): 167.

    [35] Ikeuchi K. Determining surface orientations of specular surfaces by using the photometric stereo method[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1981 (6): 661-669.

    [36] Woodham R J. Photometric stereo: A reflectance map technique for determining surface orientation from image intensity[C]//Image Understanding Systems and Industrial Applications I, 1979, 155: 136-144.

    [37] Sun B, Edgar M P, Bowman R, et al. 3D computational imaging with single-pixel detectors[J]. Science, 2013, 340(6134): 844-847.

    [38] Abramson N. Light-in-flight recording by holography[J]. Optics Letters, 1978, 3(4): 121-123.

    [39] Heide F, Hullin M B, Gregson J, et al. Low-budget transient imaging using photonic mixer devices[J]. ACM Transactions on Graphics (ToG), 2013, 32(4): 45.

    [40] Sun M J, Edgar M P, Gibson G M, et al. Single-pixel three-dimensional imaging with time-based depth resolution[J]. Nature Communications, 2016, 7: 12010.

    [41] Shrekenhamer D, Watts C M, Padilla W J. Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator[J]. Optics Express, 2013, 21(10): 12507-12518.

    [42] Chan W L, Charan K, Takhar D, et al. A single-pixel terahertz imaging system based on compressed sensing[J]. Applied Physics Letters, 2008, 93(12): 121105.

    [43] Greenberg J, Krishnamurthy K, Brady D. Compressive single-pixel snapshot x-ray diffraction imaging[J]. Optics Letters, 2014, 39(1): 111-114.

    [44] Radwell N, Mitchell K J, Gibson G M, et al. Single-pixel infrared and visible microscope[J]. Optica, 2014, 1(5): 285-289.

    [45] Edgar M P, Gibson G M, Bowman R W, et al. Simultaneous real-time visible and infrared video with single-pixel detectors[J]. Scientific Reports, 2015(5): 10669.

    [46] Tanha M, Kheradmand R, Ahmadi-Kandjani S. Gray-scale and color optical encryption based on computational ghost imaging[J]. Applied Physics Letters, 2012, 101(10): 101108.

    [47] Liu X F, Chen X H, Yao X R, et al. Lensless ghost imaging with sunlight[J]. Optics Letters, 2014, 39(8): 2314-2317.

    [48] Duan D, Du S, Xia Y. Multiwavelength ghost imaging[J]. Physical Review A, 2013, 88(5): 053842.

    [49] Bian L, Suo J, Situ G, et al. Multispectral imaging using a single bucket detector[J]. Scientific Reports, 2016(6): 24752.

    [50] Wang Y, Suo J, Fan J, et al. Hyperspectral computational ghost imaging via temporal multiplexing[J]. IEEE Photonics Technology Letters, 2016, 28(3): 288-291.

    [51] Liu Z, Tan S, Wu J, et al. Spectral camera based on ghost imaging via sparsity constraints[J]. Scientific Reports, 2016(6): 25718.

    [52] Goda K, Tsia K, Jalali B. Serial time-encoded amplified imaging for real-timeobservation of fast dynamic phenomena[J]. Nature, 2009, 458(7242):1145.

    [53] Morris P A, Aspden R S, Bell J E C, et al. Imaging with a small number of photons[J]. Nature Communications, 2015, 6: 5913.

    [54] Tajahuerce E, Durán V, Clemente P, et al. Image transmission through dynamic scattering media by single-pixel photodetection[J]. Optics Express, 2014, 22(14): 16945-16955.

    [55] Meyers R E, Deacon K S, Shih Y. Turbulence-free ghost imaging[J]. Applied Physics Letters, 2011, 98(11): 111115.

    [56] Zerom P, Shi Z, O'Sullivan M N, et al. Thermal ghost imaging with averaged speckle patterns[J]. Physical Review A, 2012, 86(6): 063817.

    [57] Dixon P B, Howland G A, Chan K W C, et al. Quantum ghost imaging through turbulence[J]. Physical Review A, 2011, 83(5): 051803.

    [58] Magana-Loaiza O S, Howland G A, Malik M, et al. Compressive object tracking using entangled photons[J]. Applied Physics Letters, 2013, 102(23): 231104.

    [59] Zhang Z, Ma X, Zhong J. Single-pixel imaging by means of Fourier spectrum acquisition[J]. Nature Communications, 2015(6): 6225.

    [60] Henriques R, Griffiths C, Hesper Rego E, et al. PALM and STORM: Unlocking live-cell super-resolution[J]. Biopolymers, 2011, 95(5): 322-331.

    [61] Willig K I, Rizzoli S O, Westphal V, et al. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis[J]. Nature, 2006, 440(7086): 935.

    [62] Kner P, Chhun B B, Griffis E R, et al. Super-resolution video microscopy of live cells by structured illumination[J]. Nature Methods, 2009, 6(5): 339.

    [63] Zheng G, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature Photonics, 2013, 7(9): 739.

    [64] Ghanbari-Ghalehjoughi H, Ahmadi-Kandjani S, Eslami M. High quality computational ghost imaging using multi-fluorescent screen[J]. JOSA A, 2015, 32(2): 323-328.

    [65] Pian Q, Yao R, Zhao L, et al. Hyperspectral time-resolved wide-field fluorescence molecular tomography based on structured light and single-pixel detection[J]. Optics Letters, 2015, 40(3): 431-434.

    [66] Deng C, Suo J, Wang Y, et al. Single-shot thermal ghost imaging usingwavelength-division multiplexing[J]. Applied Physics Letters, 2018, 112(5): 051107.

    [67] Deng C, Hu X, Li X, et al. High fidelity single-pixel imaging[J]. IEEE Photonics Journal, 2019, 11(2): 1.

    Deng Chao, Suo Jinli, Zhang Zhili, Dai Qionghai. Coding and decoding of optical information in single-pixel imaging[J]. Infrared and Laser Engineering, 2019, 48(6): 603004
    Download Citation