• Laser & Optoelectronics Progress
  • Vol. 61, Issue 10, 1028003 (2024)
Ran He1、2、*, Liang Zhu1、2, Junfa Dong1、2, Zhenzhong Xiao2, and Yuming Dong1
Author Affiliations
  • 1Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518052, Guangdong , China
  • 2Orbbec Technology Group Co., Ltd., Shenzhen 518055, Guangdong , China
  • show less
    DOI: 10.3788/LOP232126 Cite this Article Set citation alerts
    Ran He, Liang Zhu, Junfa Dong, Zhenzhong Xiao, Yuming Dong. Modeling and Simulation of LiDAR Based on Single-Photon Avalanche Diode[J]. Laser & Optoelectronics Progress, 2024, 61(10): 1028003 Copy Citation Text show less
    Schematic diagram of LiDAR ranging based on SPAD
    Fig. 1. Schematic diagram of LiDAR ranging based on SPAD
    Receiving and emitting model for LiDAR
    Fig. 2. Receiving and emitting model for LiDAR
    Photon response diagram in passive reset circuit and active reset circuit
    Fig. 3. Photon response diagram in passive reset circuit and active reset circuit
    Signal response diagram of single-event first-photon TDC and multi-event TDC
    Fig. 4. Signal response diagram of single-event first-photon TDC and multi-event TDC
    Schematic diagram for LiDAR modeling process based on SPAD
    Fig. 5. Schematic diagram for LiDAR modeling process based on SPAD
    Simulation histograms of passive reset mode and active reset mode quenching circuits under the condition of the time of flight of 20 ns and the ambient light of 50×103 lx. (a) Passive reset circuit histogram with target reflectivity of 10%; (b) active reset circuit histogram with target reflectivity of 10%; (c) passive reset circuit histogram with target reflectivity of 50%; (d) active reset circuit histogram with target reflectivity of 50%
    Fig. 6. Simulation histograms of passive reset mode and active reset mode quenching circuits under the condition of the time of flight of 20 ns and the ambient light of 50×103 lx. (a) Passive reset circuit histogram with target reflectivity of 10%; (b) active reset circuit histogram with target reflectivity of 10%; (c) passive reset circuit histogram with target reflectivity of 50%; (d) active reset circuit histogram with target reflectivity of 50%
    Success rates of different TOFs for two types of circuits under ambient light of 50×103 lx. (a) Target reflectivity is 10%; (b) target reflectivity is 50%
    Fig. 7. Success rates of different TOFs for two types of circuits under ambient light of 50×103 lx. (a) Target reflectivity is 10%; (b) target reflectivity is 50%
    Histograms of single-event first-photon TDC and multi-event TDC under different conditions. (a) Histogram of single-event first-photon TDC under the ambient light of 50×103 lx; (b) histogram of multi-event TDC under the ambient light of 50×103 lx; (c) histogram of single-event first-photon TDC under the ambient light of 100×103 lx; (d) histogram of multi-event TDC under the ambient light of 100×103 lx
    Fig. 8. Histograms of single-event first-photon TDC and multi-event TDC under different conditions. (a) Histogram of single-event first-photon TDC under the ambient light of 50×103 lx; (b) histogram of multi-event TDC under the ambient light of 50×103 lx; (c) histogram of single-event first-photon TDC under the ambient light of 100×103 lx; (d) histogram of multi-event TDC under the ambient light of 100×103 lx
    Success rates of single-event first-photon TDC and multi-event TDC under the target reflectivity of 10%. (a) Ambient light of 50×103 lx; (b) ambient light of 100×103 lx
    Fig. 9. Success rates of single-event first-photon TDC and multi-event TDC under the target reflectivity of 10%. (a) Ambient light of 50×103 lx; (b) ambient light of 100×103 lx
    Histograms of four combined circuit architectures. (a) Passive reset circuit+single-event first-photon TDC; (b) active reset circuit+single-event first-photon TDC; (c) passive reset circuit+multi-event TDC; (d) active reset circuit+multi-event TDC
    Fig. 10. Histograms of four combined circuit architectures. (a) Passive reset circuit+single-event first-photon TDC; (b) active reset circuit+single-event first-photon TDC; (c) passive reset circuit+multi-event TDC; (d) active reset circuit+multi-event TDC
    Success rates of four combination circuits under the ambient light of 50×103 lx and the target reflectivity of 50%
    Fig. 11. Success rates of four combination circuits under the ambient light of 50×103 lx and the target reflectivity of 50%
    PartParameterSymbolValueUnit
    VCSELCentral wavelengthλ940nm
    Peak powerPTX30mW
    Pulse widthW1ns
    Oxide apertureVOA50μm
    Repetition rate2MHz
    SPADPixel sizea50μm
    PDEηPDE15%
    DCRNDCR5Hz/μm2
    TX optical elementFocal lengthfTX2mm
    TransmittanceTTX96%
    RX optical elementFocal lengthfRX2mm
    DiameterDRX1mm
    TransmittanceTRX96%
    Filter bandwidthΔλ40nm
    Quenching circuitDead timeTdead10ns
    TDCLSB/bin size400ps
    OthersTOF20ns
    SunlightMBG50,100103 lx
    Target reflectivityρtarget10,50%
    Number of measurement periodNTCSPC105
    Table 1. Key parameters of each module of the LiDAR system
    Ran He, Liang Zhu, Junfa Dong, Zhenzhong Xiao, Yuming Dong. Modeling and Simulation of LiDAR Based on Single-Photon Avalanche Diode[J]. Laser & Optoelectronics Progress, 2024, 61(10): 1028003
    Download Citation