• Chinese Journal of Quantum Electronics
  • Vol. 31, Issue 4, 449 (2014)
Jin-dong WANG* and Zhi-ming ZHANG
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2014.04.009 Cite this Article
    WANG Jin-dong, ZHANG Zhi-ming. Unconditional security of quantum key distribution based on practical devices[J]. Chinese Journal of Quantum Electronics, 2014, 31(4): 449 Copy Citation Text show less
    References

    [1] Stinson D R. Cryptography: Theory and Practice [M]. 3rd Edition, CRC Press, CRC Press LLC. 2006.

    [2] Shannon C E. Communication theory of secrecy systems [J]. Bell Tech. J., 1949, 28: 656-715.

    [3] Wootters W K, Zurek W H. A single quantum cannot be cloned [J]. Nature, 1982, 299: 802-803.

    [4] Wiesner S. Conjugate coding [J]. ACM SIGACT News, 1983, 15: 78-88.

    [5] Bennett C H, Bessette F, Brassard G, et al. Experimental quantum cryptography [J]. J. Cryptol., 1992, 5: 3-28.

    [6] Ekert A K. Quantum cryptography based on Bell’s theorem [J]. Phys. Rev. Lett., 1991, 67: 661-663.

    [7] Bennett C H, Brassard G, Crepeau C, et al. Teleporting an unknown quantum state via dual classical and EPR channels [J]. Phys. Rev. Lett., 1993, 70: 1895-1899.

    [8] Bennett C H, Brassard G, Robert J M. Privacy amplification by public discussion [J]. SIAM J. Comput., 1988, 17: 210-229.

    [9] Bennett C H, Brassard G, Crkpeau C, et al. Generalized privacy amplification [J]. IEEE Trans. Inform. Theory, 1995, 41: 1915-1923.

    [10] Maurer U M, Wolf S. Privacy amplification secure against active [J]. Adv. Cryptol. CRYPTO’91, 1996, 1294: 307-321.

    [11] Van Assche G, Lblisdir S, Cerf N J. Secure coherent-state quantum key distribution protocols with efficient reconciliation [J]. Phys. Rev. A, 2005, 71: 052304.

    [12] Lo H K, Chau H F. Unconditional security of quantum key distribution over arbitrarily long distances [J]. Science, 1999, 283(5410): 2050-2056.

    [13] Mayers D. Quantum key distribution and string oblivious transfer in noisy channels [C]. Advances in Cryptology-Proceedings of Crypto’96 (Aug.), Springer-Verlag, New York, 1996, 343-357.

    [14] Mayers D, Salvail L. Quantum oblivious transfer is secure against all individual measurements [C]. Proceedings of the Workshop on Physics and Computation, PhysComp’94, (Dallas, Tex., Nov.), 1994, 69-77.

    [15] Mayers D. On the security of the quantum oblivious transfer and key distribution protocols [C]. Advances in Cryptology-Proceedings of Crypto’95 (Aug.), Springer-Verlag, New York, 1995, 124-135.

    [16] Deutsch D, Ekert A K, Jozsa R, et al. Quantum privacy amplification and the security of quantum cryptography over noisy channels [J]. Phys. Rev. Lett., 1996, 77: 2818-2821.

    [17] Biham E, Mor T. On the security of quantum cryptography against collective attacks [J]. Phys. Rev. Lett., 1996, 78: 2256-2259.

    [18] Biham E, Boyer M, Brassard G, et al. Security of quantum key distribution against all collective attacks [EB/OL]. LANL archives 1998, quant-ph/9801022.

    [19] Mayers D. Unconditional security in quantum cryptography [J]. Journal of the ACM, 2001, 48(3): 351-406.

    [20] Shor P W, Preskill J. Simple proof of security of the BB84 quantum key distribution protocol [J]. Phys. Rev. Lett., 2000, 2: 441-444.

    [21] Quan Z, Chao-Jing T, Sen-Qiang Z. Modification of B92 protocol and the proof of its unconditional security [J]. Acta Physica Sinica, 2002, 51: 1447.

    [22] Tamaki K, Koashi M, Imoto N. Unconditionally secure key distribution based on two nonorthogonal states [J]. Phys. Rev. Lett., 2003, 90: 167904.

    [23] Masato Koashi, John Preskill. Secure quantum key distribution with an uncharacterized source [J]. Phys. Rev. Lett., 2003, 90(5): 057902.

    [24] Koashi M. Simple security proof of quantum key distribution based on complementarity [J]. New J. Phys., 2009, 11: 045018-045018.

    [25] Koashi M. Efficient quantum key distribution with practical sources and detectors [EB/OL]. 2006, arXiv:quantph/0609180.

    [26] Kai Wen, Kiyoshi Tamaki, Yoshihisa Yamamoto. Unconditional security of single-photon differential phase shift quantum key distribution [J]. Phys. Rev. Lett., 2009, 103: 0401141.

    [27] Zhao Yibo, Fred Fung Chihang, Han Zhengfu, et al. Security proof of differential phase shift quantum key distribution in the noiseless case [J]. Phys. Rev. A, 2008, 78: 042330.

    [28] Gottesman D, Lo H K, et al. Security of quantum key distribution with imperfect devices [J]. Quantum Inf. Comput., 2004, 4: 325.

    [29] Hwang W Y. Quantum key distribution with high loss: toward global secure communication [J]. Phys. Rev. Lett., 2003, 91: 057901.

    [30] Lo H K, Ma X, Chen K. Decoy state quantum key distribution [J]. Phys. Rev. Lett., 2005, 94: 230504.

    [31] Wang X B. Beating the photon-number-splitting attack in practical quantum cryptography [J]. Phys. Rev. Lett., 2005, 94: 230503.

    [32] Zhao Y, Qi B, Ma X, et al. Experimental quantum key distribution with decoy states [J]. Phys. Rev. Lett., 2006, 96: 070502.

    [33] Rosenberg D, Harrington J W, Rice P R, et al. Long-distance decoy-state quantum key distribution in optical fiber [J]. Phys. Rev. Lett., 2007, 98: 010503.

    [34] Inamori H, Lütkenhaus N, Mayers D. Unconditional security of pratical quantum key distribution [J]. Eur. Phys. J. D., 2007, 41: 599-627.

    [35] Huttner B, Imoto N, Gisin N, et al. Quantum cryptography with coherent states [J]. Phys. Rev. A, 1995, 51: 1863-1869.

    [36] Hwang W Y, Wang X B, Matsumoto K, et al. Shor-preskill-type security proof for quantum key distribution without public announcement of bases [J]. Phys. Rev. A, 2003, 67: 012302.

    [37] Wen K, Long G L. Modified Bennett-Brassard 1984 quantum key distribution protocol with two-way classical communications [J]. Phys. Rev. A, 2005, 72: 022336.

    [38] Wang X B. Decoy-state protocol for quantum cryptography with four different intensities of coherent light [J]. Phys. Rev. A, 2005, 72: 12322.

    [39] Zhao Yi, Qi Bing, Lo Hoi-Kwong. Quantum key distribution with an unknown and untrusted source [J]. Phys. Rev. A, 2008, 77: 052327.

    [40] Peng Xiang, Jiang Hao, Xu Bingjie, et al. Experimental quantum key distribution with an untrusted source [J]. Opt. Lett., 2008, 33(18): 2077-2079.

    [41] Vakhitov A, Makarov V, Hjelme D. Large pulse attack as a method of conventional optical eavesdropping in quantum cryptography [J]. Journal of Modern Optics, 2001, 48(13): 2023-2038.

    [42] Ribordy G, Gautier J D, Gisin N, et al. Fast and user-friendly quantum key distribution [J]. Journal of Modern Optics, 2000, 47: 517-531.

    [43] Fred Fung Chihang, Qi Bing, Tamaki Kiyoshi, et al. Phase-remapping attack in practical quantum-key-distribution systems [J]. Phys. Rev. A, 2007, 75: 032314.

    [44] Xu Feihu, Qi Bing, Lo HoiKwong. Experimental demonstration of phase-remapping attack in a practical quantum key distribution system [J]. New Journal of Physics, 2010, 12: 113026.

    [45] Makarov V, Hjelme Dag R. Faked states attack on quantum cryptosystems [J]. Journal of Modern Optics, 2005, 52(5): 691-705.

    [46] Makarov V, Anisimov A, et al. Effects of detector efficiency mismatch on security of quantum cryptosystems [J]. Phys. Rev. A, 2006, 74: 022313.

    [47] Qi Bing, Fred Fung Chihang, Lo Hoi-Kwong, et al. Time-shift attack in practical quantum cryptosystems [J]. Quantum Information and Computation, 2007, 7: 73-82.

    [48] Nitin Jain, Christoffer Wittmann, Lars Lydersen, et al. Device calibration impacts security of quantum key distribution [J]. Phys. Rev. Lett., 2011, 107: 110501.

    [49] Lars Lydersen, Carlos Wiechers, Christoffer Wittmann, et al. Hacking commercial quantum cryptography systems by tailored bright illumination [J]. Nature Photonics, 2000, 4: 686-689.

    [50] Vadim Makarov. Controlling passively quenched single photon detectors by bright light [J]. New J. Phys., 2009, 11: 065003.

    [51] Kwong Lo H, Curty M, Bing Q. Measurement device independent quantum key distribution [J]. Phys. Rev. Lett., 2012, 108: 1305031.

    [52] Mayers D, Yao A C C. Quantum cryptography with imperfect apparatus [C]. Proceeding of the 39th Annual Symposium on Foundations of Computer Science (FOCS98), (IEEE Computer Society, Washington, DC, 1998), 1998, 503.

    [53] Acin A, et al. Device-independent security of quantum cryptography against collective attacks [J]. Phys. Rev. Lett., 2007, 98: 230501.

    [54] Tamaki K, Lo H K, Fung C H F, et al. Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw [J]. Phys. Rev. A, 2012, 85: 042307.

    [55] Ma X, Razavi M. Alternative schemes for measurement-device-independent quantum key distribution [J]. Phys. Rev. A, 2012, 86: 062319.

    [56] Ma X, Fred Fung ChiHang, Razavi Mohsen. Statistical fluctuation analysis for measurement-device-independent quantum key distribution [J]. Phys. Rev. A, 2012, 86: 052305.

    [57] Liu Y, Chen T Y, et al. Experimental measurement-device-independent quantum key distribution [J]. Phys. Rev. Lett., 2013, 111: 130502.

    [58] Tang Zhiyuan, Liao Zhongfa, Xu Feihu, et al. Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution [EB/OL]. 2013, arXiv: 1306. 6134.

    [59] Ferreira da Silva T, Vitoreti D, Xavier G B, et al. Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits [J]. Phys. Rev. A, 2013, 88: 052303.

    WANG Jin-dong, ZHANG Zhi-ming. Unconditional security of quantum key distribution based on practical devices[J]. Chinese Journal of Quantum Electronics, 2014, 31(4): 449
    Download Citation