• Infrared and Laser Engineering
  • Vol. 49, Issue S1, 20200093 (2020)
Liu Pengfei1,2,3,4,5, Zhao Huaici1,2,4,5,*, and Li Peixuan1,2,3,4,5
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • 5[in Chinese]
  • show less
    DOI: 10.3788/irla20200093 Cite this Article
    Liu Pengfei, Zhao Huaici, Li Peixuan. Hyperspectral images reconstruction using adversarial networks from single RGB image[J]. Infrared and Laser Engineering, 2020, 49(S1): 20200093 Copy Citation Text show less
    References

    [4] Arad B, Benshahar O. Sparse recovery of hyperspectral signal from natural RGB images[C]//European Conference on Computer Vision, 2016: 19-34.

    [5] Zhang Zexia, Chang Jun, Ren Hongxi, et al. Snapshot imaging spectrometer based on a microlens array[J]. Chinese Optics Letters, 2019, 17(1): 35-39.

    [6] Takatani T, Aoto T, Mukaigawa Y, et al. One-shot hyperspectral imaging using faced reflectors[C]//Computer Vision and Pattern Recognition, 2017: 2692-2700.

    [7] Oh S W, Brown M S, Pollefeys M, et al. Do it yourself hyperspectral imaging with everyday digital cameras[C]//Computer Vision and Pattern Recognition, 2016: 2461-2469.

    [8] Akhtar N, Shafait F, Mian A, et al. Hierarchical beta Process with gaussian process prior for hyperspectral image super resolution[C]//European Conference on Computer Vision, 2016: 103-120.

    [9] Jia Y, Zheng Y, Gu L, et al. From RGB to spectrum for natural scenes via manifold-based mapping[C]//International Conference on Computer Vision, 2017: 4715-4723.

    [13] Xiong Z, Shi Z, Li H, et al. HSCNN: CNN-based hyperspectral image recovery fromspectrally undersampled projections[C]//International Conference on Computer Vision, 2017: 518-525.

    [14] Shi Z, Chen C, Xiong Z, et al. HSCNN+: advanced CNN-based hyperspectral recovery from RGB images[C]// Computer Vision and Pattern Recognition, 2018: 939-947.

    [15] Alvarezgila A, De Weijer J V, Garrote E, et al. Adversarial networks for spatial context-aware spectral image reconstruction from RGB[C]//International Conference on Computer Vision, 2017: 480-490.

    [16] Chakrabarti A, Zickler T. Statistics of real-world hyperspectral images[C]//Computer Vision and Pattern Recognition, 2011: 193-200.

    CLP Journals

    [1] Xuheng CAO, Xiaopeng HAO, Yusheng LIAN, Xuquan WANG, Xinbin CHENG. Degradation-aware transformer for blind hyperspectral and multispectral image fusion(back cover paper·invited)[J]. Infrared and Laser Engineering, 2025, 54(5): 20240592

    [2] SUN Bang-yong, YU Meng-ying, YAO Qi. Research on Spectral Reconstruction Method From RGB Imaging Based on Dual Attention Mechanism[J]. Spectroscopy and Spectral Analysis, 2023, 43(9): 2687

    Liu Pengfei, Zhao Huaici, Li Peixuan. Hyperspectral images reconstruction using adversarial networks from single RGB image[J]. Infrared and Laser Engineering, 2020, 49(S1): 20200093
    Download Citation