• Chinese Journal of Lasers
  • Vol. 49, Issue 8, 0802009 (2022)
Zhen Dou1, Yuyue Wang1, Anfeng Zhang2、*, Mengjie Wu2, and Puqiang Wang1
Author Affiliations
  • 1State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
  • 2State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
  • show less
    DOI: 10.3788/CJL202149.0802009 Cite this Article Set citation alerts
    Zhen Dou, Yuyue Wang, Anfeng Zhang, Mengjie Wu, Puqiang Wang. Effect of Different Heat Treatments on Microstructure, Properties, and Anisotropy of SLM TC4[J]. Chinese Journal of Lasers, 2022, 49(8): 0802009 Copy Citation Text show less
    References

    [1] Wen Y, Jiang T, Wu G H et al. Research status on microstructures and properties of two-phase titanium alloys by 3D printing[J]. Failure Analysis and Prevention, 11, 42-46(2016).

    [2] Zhang A F, Li D C, Liang S D et al. Development of laser additive manufacturing of high-performance metal parts[J]. Aeronautical Manufacturing Technology, 59, 16-22(2016).

    [3] Yang D J, Liu R H. Research development of 3D printing for large complex metal parts[J]. Ordnance Industry Automation, 36, 8-12(2017).

    [4] Ren Y M, Lin X, Fu X et al. Microstructure and deformation behavior of Ti-6Al-4V alloy by high-power laser solid forming[J]. Acta Materialia, 132, 82-95(2017).

    [5] Zhu J L, Wang K, Ma G D et al. Study on TC4 titanium alloy selective laser melting forming mechanical properties[J]. Applied Laser, 37, 793-800(2017).

    [6] Wen J B[M]. Metal materials, 237-241(2011).

    [7] Chen H S[M]. Elastic anisotropy of metals, 5-7(1996).

    [8] Luo Z D, Li S J[M]. Mechanics of anisotropic materials, 3-5(1994).

    [9] Chen F W, Gu Y L, Xu G L et al. Improved fracture toughness by microalloying of Fe in Ti-6Al-4V[J]. Materials & Design, 185, 108251(2020).

    [10] Qi Z J, Zhang X X, Wang Y Y et al. Effect of B on microstructure and tensile properties of laser additive manufactured TC4 alloy[J]. Chinese Journal of Lasers, 47, 0602002(2020).

    [11] Shi L, Lei L M, Fu X et al. Effect of Fe content on the microstructure and tensile properties of TC4 alloy fabricated by laser solid forming[J]. Rare Metal Materials and Engineering, 49, 1674-1680(2020).

    [12] Zhang J Z, Zhang A F, Wang H et al. Microstructure and anisotropy of high performance TC4 obtained by micro forging laser cladding deposition[J]. Chinese Journal of Lasers, 46, 0402009(2019).

    [13] Sabban R, Bahl S, Chatterjee K et al. Globularization using heat treatment in additively manufactured Ti-6Al-4V for high strength and toughness[J]. Acta Materialia, 162, 239-254(2019).

    [14] Yuan J W, Li Z, Tang H B et al. Effect of heat treatment on corrosion resistance and room temperature compression creep of LAMed TC4 alloy[J]. Acta Aeronautica et Astronautica Sinica, 42, 478-485(2021).

    [15] Wang W, Xu X W, Ma R X et al. The influence of heat treatment temperature on microstructures and mechanical properties of titanium alloy fabricated by laser melting deposition[J]. Materials, 13, 4087(2020).

    [16] Zhao Z Y, Li L, Bai P K et al. The heat treatment influence on the microstructure and hardness of TC4 titanium alloy manufactured via selective laser melting[J]. Materials, 11, 1318(2018).

    [17] Wang K H, Kopec M, Chang S P et al. Enhanced formability and forming efficiency for two-phase titanium alloys by Fast light Alloys Stamping Technology (FAST)[J]. Materials & Design, 194, 108948(2020).

    [18] Zhang S Y, Lin X, Chen J et al. Influence of heat treatment on the microstructure and properties of Ti-6Al-4V titanium alloy by laser rapid forming[J]. Rare Metal Materials and Engineering, 36, 1263-1266(2007).

    [19] Zhao Z[D]. Intracrystalline substructures control and strength-toughness optimization of laser solid formed TC4-DT alloy(2018).

    [20] Huang J G[D]. Study of microstructure and properties of TC4 alloy by selective laser melting(2018).

    [21] Yang J J, Yu H C, Yin J et al. Formation and control of martensite in Ti-6Al-4V alloy produced by selective laser melting[J]. Materials & Design, 108, 308-318(2016).

    [22] Liu S Y, Shin Y C. Additive manufacturing of Ti6Al4V alloy: a review[J]. Materials & Design, 164, 107552(2019).

    [23] Wu W, Pang Y H, Liu D et al. Control of rear-jamming and double-state microstructure of TC4 titanium alloy super-thick-walled tube in cross piercing[J]. Hot Working Technology, 48, 92-96(2019).

    [24] Wang K, Li Y Q, Wang L et al. Effect of strain amplitude on fatigue fracture mechanism of TC4 titanium alloy with duplex structure[J]. Hot Working Technology, 47, 86-89(2018).

    [25] Peng M Q, Cheng X W, Zheng C et al. Effects of volume fraction of transformed β matrix on dynamic mechanical properties and sensitivity of adiabatic shear banding in bimodal microstructures of TC4 alloy[J]. Rare Metal Materials and Engineering, 46, 2227-2233(2017).

    [26] Akram J, Pal D, Stucker B. Establishing flow stress and elongation relationships as a function of microstructural features of Ti6Al4V alloy processed using SLM[J]. Designs, 3, 21(2019).

    [27] Tan X P, Kok Y H, Toh W Q et al. Revealing martensitic transformation and α/β interface evolution in electron beam melting three-dimensional-printed Ti-6Al-4V[J]. Scientific Reports, 6, 26039(2016).

    [28] Carroll B E, Palmer T A, Beese A M. Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing[J]. Acta Materialia, 87, 309-320(2015).

    [29] Lu J X, Chang L, Wang J et al. In-situ investigation of the anisotropic mechanical properties of laser direct metal deposition Ti6Al4V alloy[J]. Materials Science and Engineering: A, 712, 199-205(2018).

    Zhen Dou, Yuyue Wang, Anfeng Zhang, Mengjie Wu, Puqiang Wang. Effect of Different Heat Treatments on Microstructure, Properties, and Anisotropy of SLM TC4[J]. Chinese Journal of Lasers, 2022, 49(8): 0802009
    Download Citation