• Journal of Infrared and Millimeter Waves
  • Vol. 31, Issue 6, 536 (2012)
YANG Xi-Guang1、2、*, YU Ying3, HUANG Hai-Jun1, and FAN Wen-Yi3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3724/sp.j.1010.2012.00536 Cite this Article
    YANG Xi-Guang, YU Ying, HUANG Hai-Jun, FAN Wen-Yi. Estimation of forest canopy nitrogen content based on remote sensing[J]. Journal of Infrared and Millimeter Waves, 2012, 31(6): 536 Copy Citation Text show less
    References

    [1] Penning de Vries F W, Brunsting A H, Van Laar H H. Products, requirements and efficiency of biosynthesis: a quantitative approach [J]. Journal of Theoretical Biology, 1974, 45(2):339-377.

    [2] Penning de Vries F W. The cost of maintenance processes in plant cells [J]. Annals of Botany, 1975, 39(1):77-92.

    [5] Johnson L F, Hlavka C A, Peterson D L. Multivariate analysis of AVIRIS data for canopy biochemical estimation along the oregon transect [J]. Remote Sensing of Environment. 1994, 47(2):216-230.

    [6] Matson P, Johnson L, Billow C, et al. Seasonal patterns and remote spectral estimation of canopy chemistry across the oregon transect [J]. Ecological Applications. 1994,4(2):280-298.

    [7] Huang Z, Turner B J, Dury S J, et al. Estimating foliage nitrogen concentration from HYMAP data using continuum removal analysis [J]. Remote Sensing of Environment. 2004, 93(1-2):18-29.

    [8] Smith M, Ollinger S V, Martin M E, et al. Direct estimation of aboveground forest productivity through hyperspectral remote sensing of canopy nitrogen [J]. Ecological Applications. 2002, 12(5):1286-1302.

    [9] Zhang Y Q, Chen J M, Miller J R, et al. Leaf chlorophyll content retrieval from airborne hyperspectral remote sensing imagery [J]. Remote Sensing of Environment. 2008, 112(7):3234-3247.

    [10] Mokhele T A, Ahmed F B. Estimation of leaf nitrogen and silicon using hyperspectral remote sensing [J]. Journal of Applied Remote Sensing. 2010, 4(043560):1-18.

    [11] Fitzgerald G, Rodriguez D, O'leary G. Measuring and predicting canopy nitrogen nutrition in wheat using a spectral index-The Canopy Chlorophyll Content Index (CCCI) [J]. Field Crops Research.2010, 116(3):318-324.

    [12] Rao N R, Garg P K, Ghosh S K, et al. Estimation of leaf total chlorophyll and nitrogen concentrations using hyperspectral satellite imagery [J]. Journal of Agricultural Science. 2008, 146(1): 65-75.

    [14] Chen J M, Cihlar J. Retrieving leaf area index of boreal conifer forests using Landsat TM images [J]. Remote Sensing of Environment.1996, 55(2):153-162.

    [21] Li X, Strahler A H. Modeling the gap probability of a discontinuous vegetation canopy [J]. IEEE Transactions on Geoscience and Remote Sensing.1988, 26(2):161-170.

    [22] Li X, Strahler A H, Woodcook C E. A hybrid geometric optical-radiative transfer approach for modeling albedo and directional reflectance of discontinuous canopies [J]. IEEE Transactions on Geoseience and Remote Sensing.1995, 33(2):466-480.

    [23] Chen J M, Leblanc S G. A 4-scale bidirectional reflection model based on canopy architecture [J]. IEEE Transactions on Geoscience and Remote Sensing.1997, 35(5):1316-1337.

    [25] Yang X G, Fan W Y, Yu Y. Leaf and canopy chlorophyll content retrieval from hyperspectral remote sensing imagery[C]. IEEE Sensors Applications Symposium (SAS), 23rd-25th February, . Piscataway: IEEE Press, 2010:50-53.

    YANG Xi-Guang, YU Ying, HUANG Hai-Jun, FAN Wen-Yi. Estimation of forest canopy nitrogen content based on remote sensing[J]. Journal of Infrared and Millimeter Waves, 2012, 31(6): 536
    Download Citation