• Laser & Optoelectronics Progress
  • Vol. 59, Issue 15, 1516017 (2022)
Tonglei Cheng†、*, Zhiyuan Yin1、†, Wei Liu, Dianchang Song, Xin Yan, Fang Wang, and Xuenan Zhang
Author Affiliations
  • State Key Laboratory of Synthetical Automation for Process Industries, College of Information Science and Engineering, Northeastern University, Shenyang 110819, Liaoning , China
  • show less
    DOI: 10.3788/LOP202259.1516017 Cite this Article Set citation alerts
    Tonglei Cheng, Zhiyuan Yin, Wei Liu, Dianchang Song, Xin Yan, Fang Wang, Xuenan Zhang. Rare Earth Ion-Doped Tellurite Upconversion Luminescent Glass and Optical Fiber for Fluorescence Sensing Applications[J]. Laser & Optoelectronics Progress, 2022, 59(15): 1516017 Copy Citation Text show less
    References

    [1] Liu J M, Huang X, Pan H et al. Broadband near infrared emission of Er3+/Yb3+ co-doped fluorotellurite glass[J]. Journal of Alloys and Compounds, 866, 158568(2021).

    [2] Li Y J, Cheng Z Y, Yao L et al. Boosting NIR-driven photocatalytic activity of BiOBr∶Yb3+/Er3+/Ho3+ nanosheets by enhanced green upconversion emissions via energy transfer from Er3+ to Ho3+ ions[J]. ACS Sustainable Chemistry & Engineering, 7, 18185-18196(2019).

    [3] Ren K Y, Shi W, Zhang Y T et al. Output power of erbium-ytterbium co-doped fiber amplifier after high temperature aging[J]. Acta Optica Sinica, 42, 0406002(2022).

    [4] Zhu X H, Zhang J, Liu J L et al. Recent progress of rare-earth doped upconversion nanoparticles: synthesis, optimization, and applications[J]. Advanced Science, 6, 1901358(2019).

    [5] Azam M, Rai V K. Ho3+-Yb3+ codoped tellurite based glasses in visible lasers and optical devices: Judd-Ofelt analysis and frequency upconversion[J]. Solid State Sciences, 66, 7-15(2017).

    [6] Zhang Y, Xiao Z H, Lei H et al. Er3+/Yb3+ co-doped tellurite glasses for optical fiber thermometry upon UV and NIR excitations[J]. Journal of Luminescence, 212, 61-68(2019).

    [7] Lei H, Zeng L W, Lin F L et al. Yb3+/Er3+ incorporated fluorotellurite glasses with varying TeO2 content for optical temperature sensing based on upconverted FIR technique[J]. Journal of Luminescence, 229, 117677(2021).

    [8] Dagupati R, Klement R, Galusek D. Er3+/Yb3+co-doped oxyfluoro tellurite glasses: analysis of optical temperature sensing based on up-conversion luminescence[J]. International Journal of Applied Glass Science, 12, 462-471(2021).

    [9] Pysz D, Kujawa I, Stępień R et al. Stack and draw fabrication of soft glass microstructured fiber optics[J]. Bulletin of the Polish Academy of Sciences Technical Sciences, 62, 667-682(2014).

    [10] Ebendorff-Heidepriem H, Monro T M. Soft glass microstructured optical fibres: recent progress in fabrication and opportunities for novel optical devices[C](2009).

    [11] Kumar V V R K, George A K, Reeves W H et al. Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation[J]. Optics Express, 10, 1520-1525(2002).

    [12] Liu Z L. Simulation of optical properties and optimal designing of photonic crystal fibers[D](2007).

    [13] Yang K, Shen Y, He K et al. An optical fiber temperature sensor based on fluorescence intensity ratio used for real-time monitoring of chemical reactions[J]. Ceramics International, 47, 33537-33543(2021).

    [14] Qi F W, Huang F F, Lei R S et al. Emission properties of 1.8 and 2.3 μm in Tm3+-doped fluoride glass[J]. Glass Physics and Chemistry, 43, 340-346(2017).

    [15] Li R B, Tian C, Tian Y et al. Mid-infrared emission properties and energy transfer evaluation in Tm3+ doped fluorophosphate glasses[J]. Journal of Luminescence, 162, 58-62(2015).

    [16] Ma Y Y, Wang X, Zhang L Y et al. Increased radiative lifetime of Tm3+:3F4→3H6 transition in oxyfluoride tellurite glasses[J]. Materials Research Bulletin, 64, 262-266(2015).

    [17] Tang W H, Tian Y, Li B P et al. Effect of introduction of TiO2 and GeO2 oxides on thermal stability and 2 μm luminescence properties of tellurite glasses[J]. Ceramics International, 45, 16411-16416(2019).

    [18] He J L, Zhan H, Lin A X. Solid-core bismuth-tellurite glass fiber with low propagation loss and high nonlinearity[J]. Materials Research Bulletin, 122, 110619(2020).

    [19] Tu Y Y, Zhao S L, He D Y et al. A portable all-fiber thermometer based on the fluorescence intensity ratio (FIR) technique in rare earth doped TeO2-WO3-La2O3-Na2O glass[J]. Journal of Materials Chemistry C, 6, 7063-7069(2018).

    [20] Doğan A, Yıldırım S M, Erdem M et al. Investigation of spectral output of Er3+ and Yb3+/Er3+ doped TeO2-ZnO-BaO glasses for photonic applications[J]. New Journal of Chemistry, 45, 3790-3799(2021).

    [21] Azam M, Mohanty D K, Rai V K et al. Luminescence and Judd-Ofelt study of Ho3+/Ho3+-Yb3+ doped/codoped lead tellurite glasses for multifunctional applications[J]. Journal of Luminescence, 239, 118319(2021).

    [22] Jlassi I, Elhouichet H, Ferid M et al. Judd-Ofelt analysis and improvement of thermal and optical properties of tellurite glasses by adding P2O5[J]. Journal of Luminescence, 130, 2394-2401(2010).

    [23] Lakshminarayana G, Qiu J R, Brik M et al. Spectral analysis of Er3+-, Er3+/Yb3+- and Er3+/Tm3+/Yb3+-doped TeO2-ZnO-WO3-TiO2-Na2O glasses[J]. Journal of Physics Condensed Matter, 20, 375101(2008).

    [24] Yang D L, Gong H, Pun E Y B et al. Rare-earth ions doped heavy metal germanium tellurite glasses for fiber lighting in minimally invasive surgery[J]. Optics Express, 18, 18997-19008(2010).

    [25] Trindade C M, Alves R T, Silva A C A et al. Tunable greenish to reddish luminescence and two-way energy transfer in Ho3+ and Pr3+ doped TeO2∶ZnO glass[J]. Optical Materials, 99, 109574(2020).

    [26] Alves R T, Silva A C A, Dantas N O et al. Raman and optical spectroscopy studies in Tm3+/Dy3+-codoped zinc tellurite glasses[J]. Journal of Luminescence, 230, 117738(2021).

    [27] Doğan A, Erdem M, Esmer K et al. Upconversion luminescence and temperature sensing characteristics of Ho3+/Yb3+ co-doped tellurite glasses[J]. Journal of Non-Crystalline Solids, 571, 121055(2021).

    [28] Doğan A, Erdem M. Investigation of the optical temperature sensing properties of up-converting TeO2-ZnO-BaO activated with Yb3+/Tm3+ glasses[J]. Sensors and Actuators A: Physical, 322, 112645(2021).

    [29] Sangwaranatee N, Yasaka P, Rajaramakrishna R et al. Photoluminescence properties and energy transfer investigations of Gd3+ and Sm3+ co-doped ZnO-BaO-TeO2 glasses for solid state laser application[J]. Journal of Luminescence, 224, 117275(2020).

    [30] Mao L Y, Liu J L, Li L X et al. TeO2-Ga2O3-ZnO ternary tellurite glass doped with Tm3+ and Ho3+ for 2 µm fiber lasers[J]. Journal of Non-Crystalline Solids, 531, 119855(2020).

    [31] Rao V H, Prasad P S, Babu K S. Visible luminescence characteristics of Pr3+ ions in TeO2-Sb2O3-WO3 glasses[J]. Optical Materials, 101, 109740(2020).

    [32] Xia L Z, Zhang Y, Ding J L et al. Er3+/Tm3+/Nd3+ tri-doping tellurite glass with ultra-wide NIR emission[J]. Journal of Alloys and Compounds, 863, 158626(2021).

    [33] Seshadri M, Bell M J V, Anjos V et al. Spectroscopic investigations on Yb3+ doped and Pr3+/Yb3+ codoped tellurite glasses for photonic applications[J]. Journal of Rare Earths, 39, 33-42(2021).

    [34] Wang X F, Liu Q, Bu Y Y et al. Optical temperature sensing of rare-earth ion doped phosphors[J]. RSC Advances, 5, 86219-86236(2015).

    [35] Musolino S, Schartner E P, Tsiminis G et al. Portable optical fiber probe for in vivo brain temperature measurements[J]. Biomedical Optics Express, 7, 3069-3077(2016).

    [36] Marek Ł, Sobczyk M. Highly sensitive luminescent pressure sensor for vacuum measurement based on Pr3+∶TeO2-ZnO-Na2O-La2O3 glasses[J]. Materials Letters, 290, 129492(2021).

    [37] Zhang M, Wang R N, Tian K et al. Optical detection of ammonia in water using integrated up-conversion fluorescence in a fiberized microsphere[J]. Journal of Lightwave Technology, 39, 7303-7306(2021).

    [38] Leal J J, Narro-García R, Flores-De los Ríos J P et al. Effect of TiO2 on the thermal and optical properties of Er3+/Yb3+ co-doped tellurite glasses for optical sensor[J]. Journal of Luminescence, 208, 342-349(2019).

    [39] Pandey A, Som S, Kumar V et al. Enhanced upconversion and temperature sensing study of Er3+-Yb3+ codoped tungsten-tellurite glass[J]. Sensors and Actuators B: Chemical, 202, 1305-1312(2014).

    [40] Tabanli S, Eryurek G. Optical investigation of Er3+ and Er3+/Yb3+ doped zinc-tellurite glass for solid-state lighting and optical thermometry[J]. Sensors and Actuators A: Physical, 285, 448-455(2019).

    [41] Haouari M, Maaoui A, Saad N et al. Optical temperature sensing using green emissions of Er3+ doped fluoro-tellurite glass[J]. Sensors and Actuators A: Physical, 261, 235-242(2017).

    [42] Yang K, Xu R, Meng Q Y et al. Er3+/Yb3+ co-doped TeO2-ZnO-ZnF2-La2O3 glass with a high fluorescence intensity ratio for an all-fiber temperature sensor[J]. Journal of Luminescence, 222, 117145(2020).

    [43] Wu T, Tong R, Liao L W et al. A point temperature sensor based on upconversion emission in Er3+/Yb3+ codoped tellurite-zinc-niobium glass[J]. Sensors, 17, 1253(2017).

    [44] Ma Z L, Gou J, Zhang Y et al. Yb3+/Er3+ co-doped Lu2TeO6 nanophosphors: hydrothermal synthesis, upconversion luminescence and highly sensitive temperature sensing performance[J]. Journal of Alloys and Compounds, 772, 525-531(2019).

    [45] Yang J X, Lin P J, Pun E Y B et al. Quantification of upconversion photon and thermosensitive feedback in Er3+/Yb3+ doped fluorotellurite glasses[J]. Journal of Luminescence, 222, 117184(2020).

    Tonglei Cheng, Zhiyuan Yin, Wei Liu, Dianchang Song, Xin Yan, Fang Wang, Xuenan Zhang. Rare Earth Ion-Doped Tellurite Upconversion Luminescent Glass and Optical Fiber for Fluorescence Sensing Applications[J]. Laser & Optoelectronics Progress, 2022, 59(15): 1516017
    Download Citation