• Photonics Research
  • Vol. 8, Issue 9, 1496 (2020)
Yifan Gu1、†, Tingting Hou2、3、†, Peng Chen1, Jinxin Cao1, Chongxiang Pan2、4, Weiguo Hu2、3、4, Bo-Ru Yang1、6、*, Xiong Pu2、3、4、7、*, and Zhong Lin Wang2、3、4、5、8、*
Author Affiliations
  • 1State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, and School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
  • 2CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
  • 3School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
  • 4Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
  • 5School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
  • 6e-mail: yangboru@mail.sysu.edu.cn
  • 7e-mail: puxiong@binn.cas.cn
  • 8e-mail: zlwang@gatech.edu
  • show less
    DOI: 10.1364/PRJ.394044 Cite this Article Set citation alerts
    Yifan Gu, Tingting Hou, Peng Chen, Jinxin Cao, Chongxiang Pan, Weiguo Hu, Bo-Ru Yang, Xiong Pu, Zhong Lin Wang. Self-powered electronic paper with energy supplies and information inputs solely from mechanical motions[J]. Photonics Research, 2020, 8(9): 1496 Copy Citation Text show less
    References

    [1] Z. L. Wang. On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater. Today, 20, 74-82(2017).

    [2] Z. L. Wang. Entropy theory of distributed energy for internet of things. Nano Energy, 58, 669-672(2019).

    [3] J. Heikenfeld, P. Drzaic, J.-S. Yeo, T. Koch. Review paper: a critical review of the present and future prospects for electronic paper. J. Soc. Inf. Display, 19, 129-156(2011).

    [4] P. P. Yin, G. Wu, W. L. Qin, X. Q. Chen, M. Wang, H. Z. Chen. CYM and RGB colored electronic inks based on silica-coated organic pigments for full-color electrophoretic displays. J. Mater. Chem. C, 1, 843-849(2013).

    [5] I. D. Morrison. Electrical charges in nonaqueous media. Colloid Surf. A, 71, 1-37(1993).

    [6] Y. Rong, H. Z. Chen, H. Y. Li, M. Wang. Encapsulation of titanium dioxide particles by polystyrene via radical polymerization. Colloid Surf. A, 253, 193-197(2005).

    [7] C. Schreuer, S. Vandewiele, T. Brans, F. Strubbe, K. Neyts, F. Beunis. Single charging events on colloidal particles in a nonpolar liquid with surfactant. J. Appl. Phys., 123, 015105(2018).

    [8] W.-C. Kao, W.-T. Chang, J.-A. Ye. Driving waveform design based on response latency analysis of electrophoretic displays. J. Display Technol., 8, 596-601(2012).

    [9] W. C. Kao, J. C. Tsai. Driving method of three-particle electrophoretic displays. IEEE Trans. Electron Devices, 65, 1023-1028(2018).

    [10] S. T. Shen, Y. X. Gong, M. L. Jin, Z. B. Yan, C. Xu, Z. C. Yi, G. F. Zhou, L. L. Shui. Improving electrophoretic particle motion control in electrophoretic displays by eliminating the fringing effect via driving waveform design. Micromachines, 9, 143-154(2018).

    [11] M. Wang, C. Lin, H. Du, H. Zang, M. McCreary. 59.1: Invited paper: electrophoretic display platform comprising B, W, R particles. SID Symposium Digest of Technical Papers, 45, 857-860(2014).

    [12] F.-R. Fan, Z.-Q. Tian, Z. L. Wang. Flexible triboelectric generator. Nano Energy, 1, 328-334(2012).

    [13] Z. L. Wang. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano, 7, 9533-9557(2013).

    [14] H. Askari, A. Khajepour, M. B. Khamesee, Z. Saadatnia, Z. L. Wang. Piezoelectric and triboelectric nanogenerators: trends and impacts. Nano Today, 22, 10-13(2018).

    [15] Y. Zi, H. Guo, Z. Wen, M.-H. Yeh, C. Hu, Z. L. Wang. Harvesting low-frequency (<5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator. ACS Nano, 10, 4797-4805(2016).

    [16] Y. Xie, S. Wang, S. Niu, L. Lin, Q. Jing, J. Yang, Z. Wu, Z. L. Wang. Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency. Adv. Mater., 26, 6599-6607(2014).

    [17] J. Xiong, P. Cui, X. Chen, J. Wang, K. Parida, M.-F. Lin, P. S. Lee. Skin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvesting. Nat. Commun., 9, 4280(2018).

    [18] R. Hinchet, H.-J. Yoon, H. Ryu, M.-K. Kim, E.-K. Choi, D.-S. Kim, S.-W. Kim. Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science, 365, 491-494(2019).

    [19] Q. Shi, Z. Zhang, T. Chen, C. Lee. Minimalist and multi-functional human machine interface (HMI) using a flexible wearable triboelectric patch. Nano Energy, 62, 355-366(2019).

    [20] F. Yi, J. Wang, X. Wang, S. Niu, S. Li, Q. Liao, Y. Xu, Z. You, Y. Zhang, Z. L. Wang. Stretchable and waterproof self-charging power system for harvesting energy from diverse deformation and powering wearable electronics. ACS Nano, 10, 6519-6525(2016).

    [21] D. W. Kim, S.-W. Kim, U. Jeong. Lipids: source of static electricity of regenerative natural substances and nondestructive energy harvesting. Adv. Mater., 30, 1804949(2018).

    [22] W. Liu, Z. Wang, G. Wang, G. Liu, J. Chen, X. Pu, Y. Xi, X. Wang, H. Guo, C. Hu, Z. L. Wang. Integrated charge excitation triboelectric nanogenerator. Nat. Commun., 10, 1426(2019).

    [23] M. Peng, Z. Wen, L. Xie, J. Cheng, Z. Jia, D. Shi, H. Zeng, B. Zhao, Z. Liang, T. Li, L. Jiang. 3D printing of ultralight biomimetic hierarchical graphene materials with exceptional stiffness and resilience. Adv. Mater., 31, 1902930(2019).

    [24] X. Pu, M. Liu, X. Chen, J. Sun, C. Du, Y. Zhang, J. Zhai, W. Hu, Z. L. Wang. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv., 3, e1700015(2017).

    [25] F. R. Fan, W. Tang, Z. L. Wang. Flexible nanogenerators for energy harvesting and self-powered electronics. Adv. Mater., 28, 4283-4305(2016).

    [26] K. Parida, G. Thangavel, G. Cai, X. Zhou, S. Park, J. Xiong, P. S. Lee. Extremely stretchable and self-healing conductor based on thermoplastic elastomer for all-three-dimensional printed triboelectric nanogenerator. Nat. Commun., 10, 2158(2019).

    [27] Y. Chen, X. Pu, M. Liu, S. Kuang, P. Zhang, Q. Hua, Z. Cong, W. Guo, W. Hu, Z. L. Wang. Shape-adaptive, self-healable triboelectric nanogenerator with enhanced performances by soft solid-solid contact electrification. ACS Nano, 13, 8936-8945(2019).

    [28] T. He, Z. Sun, Q. Shi, M. Zhu, D. V. Anaya, M. Xu, T. Chen, M. R. Yuce, A. V.-Y. Thean, C. Lee. Self-powered glove-based intuitive interface for diversified control applications in real/cyber space. Nano Energy, 58, 641-651(2019).

    [29] G. Khandelwal, T. Minocha, S. K. Yadav, A. Chandrasekhar, N. P. Maria Joseph Raj, S. C. Gupta, S.-J. Kim. All edible materials derived biocompatible and biodegradable triboelectric nanogenerator. Nano Energy, 65, 104016(2019).

    [30] M. Seol, S. Kim, Y. Cho, K.-E. Byun, H. Kim, J. Kim, S. K. Kim, S.-W. Kim, H.-J. Shin, S. Park. Triboelectric series of 2D layered materials. Adv. Mater., 30, 1801210(2018).

    [31] W. Gong, C. Hou, J. Zhou, Y. Guo, W. Zhang, Y. Li, Q. Zhang, H. Wang. Continuous and scalable manufacture of amphibious energy yarns and textiles. Nat. Commun., 10, 868(2019).

    [32] C. Garcia, I. Trendafilova, J. Sanchez del Rio. Detection and measurement of impacts in composite structures using a self-powered triboelectric sensor. Nano Energy, 56, 443-453(2019).

    [33] S. Parandeh, M. Kharaziha, F. Karimzadeh. An eco-friendly triboelectric hybrid nanogenerators based on graphene oxide incorporated polycaprolactone fibers and cellulose paper. Nano Energy, 59, 412-421(2019).

    [34] L. Chen, Q. Shi, Y. Sun, T. Nguyen, C. Lee, S. Soh. Controlling surface charge generated by contact electrification: strategies and applications. Adv. Mater., 30, 1802405(2018).

    [35] F. Ershad, K. Sim, A. Thukral, Y. S. Zhang, C. Yu. Invited Article: Emerging soft bioelectronics for cardiac health diagnosis and treatment. APL Mater., 7, 031301(2019).

    [36] Q. Shi, T. He, C. Lee. More than energy harvesting—combining triboelectric nanogenerator and flexible electronics technology for enabling novel micro-/nano-systems. Nano Energy, 57, 851-871(2019).

    [37] H. Fang, H. Tian, J. Li, Q. Li, J. Dai, T.-L. Ren, G. Dong, Q. Yan. Self-powered flat panel displays enabled by motion-driven alternating current electroluminescence. Nano Energy, 20, 48-56(2016).

    [38] X. Y. Wei, X. Wang, S. Y. Kuang, L. Su, H. Y. Li, Y. Wang, C. Pan, Z. L. Wang, G. Zhu. Dynamic triboelectrification-induced electroluminescence and its use in visualized sensing. Adv. Mater., 28, 6656-6664(2016).

    [39] X. Y. Wei, L. Liu, H. L. Wang, S. Y. Kuang, X. Zhu, Z. L. Wang, Y. Zhang, G. Zhu. High-intensity triboelectrification-induced electroluminescence by microsized contacts for self-powered display and illumination. Adv. Mater. Interfaces, 5, 1701063(2018).

    [40] Z. L. Wang, J. Chen, L. Lin. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci., 8, 2250-2282(2015).

    [41] T. Bert, F. Beunis, H. D. Smet, K. Neyts. Steady state current in EPIDs. Displays, 27, 35-38(2006).

    [42] R. M. Webber. 10.4: Image stability in active-matrix microencapsulated electrophoretic displays. SID Symposium Digest of Technical Papers, 33, 126-129(2002).

    [43] C. Zhang, W. Tang, C. Han, F. Fan, Z. L. Wang. Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy. Adv. Mater., 26, 3580-3591(2014).

    [44] T. Bert, H. De Smet. The microscopic physics of electronic paper revealed. Displays, 24, 103-110(2003).

    [45] S. Niu, Y. Liu, S. Wang, L. Lin, Y. S. Zhou, Y. Hu, Z. L. Wang. Theory of sliding-mode triboelectric nanogenerators. Adv. Mater., 25, 6184-6193(2013).

    [46] X. Pu, W. Song, M. Liu, C. Sun, C. Du, C. Jiang, X. Huang, D. Zou, W. Hu, Z. L. Wang. Wearable power-textiles by integrating fabric triboelectric nanogenerators and fiber-shaped dye-sensitized solar cells. Adv. Energy Mater., 6, 1601048(2016).

    [47] Z. L. Wang, A. C. Wang. On the origin of contact-electrification. Mater. Today, 30, 34-51(2019).

    Yifan Gu, Tingting Hou, Peng Chen, Jinxin Cao, Chongxiang Pan, Weiguo Hu, Bo-Ru Yang, Xiong Pu, Zhong Lin Wang. Self-powered electronic paper with energy supplies and information inputs solely from mechanical motions[J]. Photonics Research, 2020, 8(9): 1496
    Download Citation