• Chinese Journal of Quantum Electronics
  • Vol. 39, Issue 6, 942 (2022)
Weidong CHEN1、*, Linqing ZHUO2, Wenguo ZHU1, Huadan ZHENG3, Yongchun ZHONG4, Jieyuan TANG1、3, Yi XIAO1, Mengyuan XIE4, Jun ZHANG1, Jianhui YU1, and Zhe CHEN3、4
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2022.06.008 Cite this Article
    CHEN Weidong, ZHUO Linqing, ZHU Wenguo, ZHENG Huadan, ZHONG Yongchun, TANG Jieyuan, XIAO Yi, XIE Mengyuan, ZHANG Jun, YU Jianhui, CHEN Zhe. Research progress of optical fiber integrated photodetectors[J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 942 Copy Citation Text show less
    References

    [1] Egusa S, Wang Z, Chocat N, et al. Multimaterial piezoelectric fibres[J]. Nature Materials, 2010, 9(8): 643-648.

    [2] Fokine M, Nilsson L E, Claesson , et al. Integrated fiber Mach-Zehnder interferometer for electro-optic switching[J]. Optics Letters, 2002, 27(18): 1643-1645.

    [3] Bayindir M, Sorin F, Abouraddy A F, et al. Metal-insulator-semiconductor optoelectronic fibres[J]. Nature, 2004, 431(7010): 826-829.

    [4] Abouraddy A F, Bayindir M, Benoit G, et al. Towards multimaterial multifunctional fibres that see, hear, sense and communicate[J]. Nature Materials, 2007, 6(5): 336-347.

    [5] Canales A, Jia X, Froriep U P, et al. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo[J]. Nature Biotechnology, 2015, 33(3): 277-284.

    [6] Xu Z H, Tang L, Zhang S W, et al. 2D MoS2/CuPc heterojunction based highly sensitive photodetectors through ultrafast charge transfer[J]. Materials Today Physics, 2020, 15: 100273.

    [7] Ulaganathan R K, Murugesan R C, Lin C Y, et al. Stable formamidinium-based centimeter long two-dimensional lead halide perovskite single-crystal for long-life optoelectronic applications[J]. Advanced Functional Materials, 2022, 32(15): 2112277.

    [8] Cusati T, Fiori G, Gahoi A, et al. Electrical properties of graphene-metal contacts[J]. Scientific Reports, 2017, 7(1): 1-11.

    [9] Zhao J, Huang Y, Li Y, et al. Superhigh-exfoliation graphene with a unique two-dimensional (2D) microstructure for lubrication application[J]. Applied Surface Science, 2020, 513: 145608.

    [10] Jang J S, Jung H J, Chong S, et al. 2D materials decorated with ultrathin and porous graphene oxide for high stability and selective surface activity[J]. Advanced Materials, 2020, 32(36): 2002723.

    [11] Bayindir M, Shapira O, Saygin-Hinczewski D, et al. Integrated fibres for self-monitored optical transport[J]. Nature Materials, 2005, 4(11): 820-825.

    [12] Shapira O, Kuriki K, Orf N D, et al. Surface-emitting fiber lasers[J]. Optics Express, 2006, 14(9): 3929-3935.

    [13] Bedeloglu A, Demir A, Bozkurt Y, et al. A photovoltaic fiber design for smart textiles[J]. Textile Research Journal, 2010, 80(11): 1065-1074.

    [14] Podoliak N, Lian Z, Loh W H, et al. Design of dual-core optical fibers with NEMS functionality[J]. Optics Express, 2014, 22(1): 1065-1076.

    [15] Yan W, Nguyen-Dang T, Cayron C, et al. Microstructure tailoring of selenium-core multimaterial optoelectronic fibers[J]. Optical Materials Express, 2017, 7(4): 1388-1397.

    [16] Yan W, Qu Y, Gupta T D, et al. Semiconducting nanowire-based optoelectronic fibers[J]. Advanced Materials, 2017, 29(27): 1700681.

    [17] Yan W, Page A, Nguyen-Dang T, et al. Advanced multimaterial electronic and optoelectronic fibers and textiles[J]. Advanced Mterials, 2019, 31(1): 1802348.

    [18] Yan W, Dong C, Xiang Y, et al. Thermally drawn advanced functional fibers: New frontier of flexible electronics[J]. Materials Today, 2020, 35: 168-194.

    [19] Chen J, Xiong Y, Xu F, et al. Silica optical fiber integrated with two-dimensional materials: Towards opto-electro-mechanical technology[J]. Light: Science & Applications, 2021, 10(1): 1-18.

    [20] Tong L, Sumetsky M. Subwavelength and Nanometer Diameter Optical Fibers[M]. Springer Science & Business Media, 2011.

    [21] Zhang L, Tang Y, Tong L. Micro-/nanofiber optics: Merging photonics and material science on nanoscale for advanced sensing technology[J]. iScience, 2020, 23(1): 100810.

    [22] Wu X, Tong L. Optical microfibers and nanofibers[J]. Nanophotonics, 2013, 2(5-6): 407-428.

    [23] Shen Z, Zhu H, Hong J, et al. All-optical tuning of light in WSe2-coated microfiber[J]. Nanoscale Research Letters, 2019, 14(1): 1-13.

    [24] Khan M R, Kang S W. A high sensitivity and wide dynamic range fiber-optic sensor for low-concentration VOC gas detection[J]. Sensors, 2014, 14(12): 23321-23336.

    [25] Cordaro M H, Rode D L, Barry T S, et al. Precision fabrication of D-shaped single-mode optical fibers by insitu monitoring[J]. Journal of Lightwave Technology, 1994, 12(9): 1524-1531.

    [26] Ahmad H, Hassan H, Zulkifli A Z, et al. Characterization of arc-shaped side-polished fiber[J]. Optical and Quantum Electronics, 2017, 49(6): 1-13.

    [27] Zhao J, Yin G, Liao C, et al. Rough side-polished fiber with surface scratches for sensing applications[J]. IEEE Photonics Journal, 2015, 7(3): 1-7.

    [28] Frisenda R, Navarro-Moratalla E, Gant P, et al. Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials[J]. Chemical Society Reviews, 2018, 47(1): 53-68.

    [29] Luo J, Liu G S, Zhou W, et al. A graphene-PDMS hybrid overcoating enhanced fiber plasmonic temperature sensor with high sensitivity and fast response[J]. Journal of Materials Chemistry C, 2020, 8(37): 12893-12901.

    [30] Sun X, Qiu C, Wu J, et al. Broadband photodetection in a microfiber-graphene device[J]. Optics Express, 2015, 23(19): 25209-25216.

    [31] Dong L, Liu X, Zhang Y, et al. All-fiber multifunctional electrooptic prototype device with a graphene/PMMA (poly (methyl methacrylate)) hybrid film integrated on coreless side-polished fibers[J]. ACS Applied Electronic Materials, 2020, 2(2): 447-455.

    [32] Zhu W, Yang S, Zheng H, et al. Gold enhanced graphene-based photodetector on optical fiber with ultrasensitivity over near-infrared bands[J]. Nanomaterials, 2021, 12(1): 124.

    [33] Zhuo L, Fan P, Zhang S, et al. A broadband all-fiber integrated graphene photodetector with CNT-enhanced responsivity[J]. Nanoscale, 2020, 12(26): 14188-14193.

    [34] Zhuo L, Fan P, Zhang S, et al. High-performance fiber-integrated multifunctional graphene-optoelectronic device with photoelectric detection and optic-phase modulation[J]. Photonics Research, 2020, 8(12): 1949-1957.

    [35] Zhuo L, Li D, Chen W, et al. High performance multifunction-in-one optoelectronic device by integrating graphene/MoS2 heterostructures on side-polished fiber[J]. Nanophotonics, 2022, 11(6): 1137-1147.

    [36] Chen J, Liang Z, Yuan L, et al. Towards an all-in fiber photodetector by directly bonding few-layer molybdenum disulfide to a fiber facet[J]. Nanoscale, 2017, 9(10): 3424-3428.

    [37] Chen J, Jing Q, Xu F, et al. High-sensitivity optical-fiber-compatible photodetector with an integrated CsPbBr3-graphene hybrid structure[J]. Optica, 2017, 4(8): 835-838.

    [38] Xiong Y F, Chen J H, Lu Y Q, et al. Broadband optical-fiber-compatible photodetector based on a graphene-MoS2-WS2 heterostructure with a synergetic photogenerating mechanism[J]. Advanced Electronic Materials, 2019, 5(1): 1800562.

    [39] Liu G, Bao X, Dong W, et al. Two-dimensional Bi2Sr2CaCu2O+8 δ nanosheets for ultrafast photonics and optoelectronics[J]. ACS Nano, 2021, 15(5): 8919-8929.

    [40] Yang H, Xiao Y, Zhang K, et al. Self-powered and high-performance all-fiber integrated photodetector based on graphene/palladium diselenide heterostructures[J]. Optics Express, 2021, 29(10): 15631-15640.

    [41] Xiong Y, Xu H, Wang Y, et al. Ultracompact multicore fiber de-multiplexer using an endface-integrating graphene photodetector array[J]. ACS Photonics, 2022, 9(5): 1808-1813.

    [42] Xiong Y, Wang Y, Zhu R, et al. Twisted black phosphorus-based van der Waals stacks for fiber-integrated polarimeters[J]. Science Advances, 2022, 8(18): eabo0375.

    [43] Gan X, Shiue R J, Gao Y, et al. Chip-integrated ultrafast graphene photodetector with high responsivity[J]. Nature Photonics, 2013, 7(11): 883-887.

    [44] Wang G, Dai T, Lvy Z, et al. Integrated high responsivity photodetectors based on graphene/glass hybrid waveguide[J]. Optics Letters, 2016, 41(18): 4214-4217.

    [45] Lin H, Song Y, Huang Y, et al. Chalcogenide glass-on-graphene photonics[J]. Nature Photonics, 2017, 11(12): 798-805.

    [46] Gao Y, Zhou G, Zhao N, et al. High-performance chemical vapor deposited graphene-on-silicon nitride waveguide photodetectors[J]. Optics Letters, 2018, 43(6): 1399-1402.

    [47] Schall D, Neumaier D, Mohsin M, et al. 50 Gbit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems[J]. Acs Photonics, 2014, 1(9): 781-784.

    [48] Ren B, Yuen G, Deng S, et al. Multifunctional optoelectronic device based on an asymmetric active layer structure[J]. Advanced Functional Materials, 2019, 29(17): 1807894.

    [49] Koenderink A F, Alù A, Polman A. Nanophotonics: Shrinking light-based technology[J]. Science, 2015, 348(6234): 516-521.

    [50] Buscema M, Island J O, Groenendijk D J, et al. Photocurrent generation with two-dimensional van der Waals semiconductors[J]. Chemical Society Reviews, 2015, 44(11): 3691-3718.

    [51] Wang F, Wang Z, Yin L, et al. 2D library beyond graphene and transition metal dichalcogenides: A focus on photodetection[J]. Chemical Society Reviews, 2018, 47(16): 6296-6341.

    [52] Koppens F H L, Mueller T, Avouris P, et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems[J]. Nature Nanotechnology, 2014, 9(10): 780-793.

    [53] Allain A, Kang J, Banerjee K, et al. Electrical contacts to two-dimensional semiconductors[J]. Nature Materials, 2015, 14(12): 1195-1205.

    [54] Guo Q, Yu R, Li C, et al. Efficient electrical detection of mid-infrared graphene plasmons at room temperature[J]. Nature Materials, 2018, 17(11): 986-992.

    [55] Glavin N R, Rao R, Varshney V, et al. Emerging applications of elemental 2D materials[J]. Advanced Materials, 2020, 32(7): 1904302.

    [56] Ashton M, Paul J, Sinnott S B, et al. Topology-scaling identification of layered solids and stable exfoliated 2D materials[J]. Physical Review Letters, 2017, 118(10): 106101.

    [57] Gibertini M, Koperski M, Morpurgo A F, et al. Magnetic 2D materials and heterostructures[J]. Nature Nanotechnology, 2019, 14(5): 408-419.

    [58] Novoselov K S, Mishchenko A, Carvalho A, et al. 2D materials and van der Waals heterostructures[J]. Science, 2016, 353(6298): aac9439.

    [59] Duong D L, Yun S J, Lee Y H. van der Waals layered materials: Opportunities and challenges[J]. ACS Nano, 2017, 11(12): 11803-11830.

    [60] Geim A K, Grigorieva I V. Van der Waals heterostructures[J]. Nature, 2013, 499(7459): 419-425.

    [61] Paik E Y, Zhang L, Burg G W, et al. Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures[J]. Nature, 2019, 576(7785): 80-84.

    CHEN Weidong, ZHUO Linqing, ZHU Wenguo, ZHENG Huadan, ZHONG Yongchun, TANG Jieyuan, XIAO Yi, XIE Mengyuan, ZHANG Jun, YU Jianhui, CHEN Zhe. Research progress of optical fiber integrated photodetectors[J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 942
    Download Citation