• Photonics Research
  • Vol. 8, Issue 10, 1558 (2020)
Jun Ma1, Yang He1, Xue Bai1, Li-Peng Sun1, Kai Chen1, Kyunghwan Oh2, and Bai-Ou Guan1、*
Author Affiliations
  • 1Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
  • 2Photonic Device Physics Laboratory, Department of Physics, Yonsei University, Seoul 033722, South Korea
  • show less
    DOI: 10.1364/PRJ.394941 Cite this Article Set citation alerts
    Jun Ma, Yang He, Xue Bai, Li-Peng Sun, Kai Chen, Kyunghwan Oh, Bai-Ou Guan. Flexible microbubble-based Fabry–Pérot cavity for sensitive ultrasound detection and wide-view photoacoustic imaging[J]. Photonics Research, 2020, 8(10): 1558 Copy Citation Text show less
    References

    [1] T. G. Leighton. The Acoustic Bubble(1994).

    [2] C. E. Brennen. Cavitation and Bubble Dynamics(2013).

    [3] S. Sirsi, M. Borden. Microbubble compositions, properties and biomedical applications. Bubble Sci. Eng. Technol., 1, 3-17(2009).

    [4] E. P. Stride, C. C. Coussios. Cavitation and contrast: the use of bubbles in ultrasound imaging and therapy. Proc. Inst. Mech. Eng. H, 224, 171-191(2010).

    [5] C. Errico, J. Pierre, S. Pezet, Y. Desailly, Z. Lenkei, O. Couture, M. Tanter. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging. Nature, 527, 499-502(2015).

    [6] R. Lachaine, C. Boutopoulos, P. Y. Lajoie, E. Boulais, M. Meunier. Rational design of plasmonic nanoparticles for enhanced cavitation and cell perforation. Nano Lett., 16, 3187-3194(2016).

    [7] F. Xie, J. Lof, C. Everbach, A. He, R. M. Bennett, T. Matsunaga, J. Johanning, T. R. Porter. Treatment of acute intravascular thrombi with diagnostic ultrasound and intravenous microbubbles. JACC Cardiovasc. Imaging, 2, 511-518(2009).

    [8] J. J. Choi, M. Pernot, S. A. Small, E. E. Konofagou. Noninvasive, transcranial and localized opening of the blood-brain barrier using focused ultrasound in mice. Ultrasound Med. Biol., 33, 95-104(2007).

    [9] L. Lin, X. Peng, Z. Mao, W. Li, M. N. Yogeesh, B. B. Rajeeva, E. P. Perillo, A. K. Dunn, D. Akinwande, Y. Zheng. Bubble-pen lithography. Nano Lett., 16, 701-708(2016).

    [10] A. Hashmi, G. Yu, M. Reilly-Collette, G. Heiman, J. Xu. Oscillating bubbles: a versatile tool for lab on a chip applications. Lab Chip, 12, 4216-4227(2012).

    [11] Y. Xie, C. Zhao, Y. Zhao, S. Li, J. Rufo, S. Yang, F. Guo, T. J. Huang. Optoacoustic tweezers: a programmable, localized cell concentrator based on opto-thermally generated, acoustically activated, surface bubbles. Lab Chip, 13, 1772-1779(2013).

    [12] Y. Xie, N. Nama, P. Li, Z. Mao, P. H. Huang, C. Zhao, F. Costanzo, T. J. Huang. Probing cell deformability via acoustically actuated bubbles. Small, 12, 902-910(2015).

    [13] M. Martins, V. Correia, J. M. Cabral, S. Lanceros-Mendez, J. G. Rocha. Optimization of piezoelectric ultrasound emitter transducers for underwater communications. Sens. Actuators A, 184, 141-148(2012).

    [14] B. W. Drinkwater, P. D. Wilcox. Ultrasonic arrays for non-destructive evaluation: a review. NDT & E Int., 39, 525-541(2006).

    [15] G. Wissmeyer, M. A. Pleitez, A. Rosenthal, V. Ntziachristos. Looking at sound: optoacoustics with all-optical ultrasound detection. Light Sci. Appl., 7, 53(2018).

    [16] P. S. Epstein, M. S. Plesset. On the stability of gas bubbles in liquid-gas solutions. J. Chem. Phys., 18, 1505-1509(1950).

    [17] S. Ljunggren, J. C. Eriksson. The lifetime of a colloid-sized gas bubble in water and the cause of the hydrophobic attraction. Colloid. Surf. A, 129–130, 151-155(1997).

    [18] L. Lin, E. H. Hill, X. Peng, Y. Zheng. Optothermal manipulations of colloidal particles and living cells. Acc. Chem. Res., 51, 1465-1474(2018).

    [19] K. Kumagai, S. Hasegawa, Y. Hayasaki. Volumetric bubble display. Optica, 4, 298-302(2017).

    [20] N.-G. Kim, K.-W. Lee. Analysis of the linear decrease in the reflectivity measured for bubbles growing on a substrate in a liquid for dissolved-gas sensor applications. Sens. Actuators B, 284, 1-6(2019).

    [21] C. Zhao, Y. Liu, Y. Zhao, N. Fang, T. J. Huang. A reconfigurable plasmofluidic lens. Nat. Commun., 4, 2305(2013).

    [22] F. Gan, Y. Wang, C. Sun, G. Zhang, H. Li, J. Chen, Q. Gong. Widely tuning surface plasmon polaritons with laser-induced bubbles. Adv. Opt. Mater., 5, 1600545(2017).

    [23] H. Xu, G. Wang, J. Ma, L. Jin, K. Oh, B.-O. Guan. Bubble-on-fiber (BoF): a built-in tunable broadband acousto-optic sensor for liquid-immersible in situ measurements. Opt. Express, 26, 11976-11983(2018).

    [24] C. Wang, W. Jin, J. Ma, Y. Wang, H. L. Ho, X. Shi. Suspended core photonic microcells for sensing and device applications. Opt. Lett., 38, 1881-1883(2013).

    [25] R. S. Taylor, C. Hnatovsky. Growth and decay dynamics of a stable microbubble produced at the end of a near-field scanning optical microscopy fiber probe. J. Appl. Phys., 95, 8444-8449(2004).

    [26] M. E. Zaytsev, Y. Wang, Y. Zhang, G. Lajoinie, X. Zhang, A. Prosperetti, H. J. W. Zandvliet, D. Lohse. Gas-vapor interplay in plasmonic bubble shrinkage. J. Phys. Chem. C, 124, 5861-5869(2020).

    [27] Y. Wang, M. E. Zaytsev, L. T. Hai, J. C. T. Eijkel, H. J. W. Zandvliet, X. Zhang, D. Lohse. Vapor and gas-bubble growth dynamics around laser-irradiated, water-immersed plasmonic nanoparticles. ACS Nano, 11, 2045-2051(2017).

    [28] D. Lohse, X. Zhang. Surface nanobubbles and nanodroplets. Rev. Mod. Phys., 87, 981-1035(2015).

    [29] G. Baffou, J. Polleux, H. Rigneault, S. Monneret. Super-heating and micro-bubble generation around plasmonic nanoparticles under CW illumination. J. Phys. Chem. C, 118, 4890-4898(2014).

    [30] S. Duhr, D. Braun. Why molecules move along a temperature gradient. Proc. Natl. Acad. Sci. USA, 103, 19678-19682(2006).

    [31] J. Ma, H. Xuan, H. L. Ho, W. Jin, Y. Yang, S. Fan. Fiber-optic Fabry–Pérot acoustic sensor with multilayer graphene diaphragm. IEEE Photon. Technol. Lett., 25, 932-935(2013).

    [32] W. L. Emkey, C. A. Jack. Analysis and evaluation of graded-index fiber lenses. J. Lightwave Technol., 5, 1156-1164(1987).

    [33] D. Marcuse. Loss analysis of single-mode fiber splices. Bell Syst. Tech. J., 56, 703-718(1977).

    [34] L. Xiao, T. A. Birks, W. H. Loh. Hydrophobic photonic crystal fibers. Opt. Lett., 36, 4662-4664(2011).

    [35] D. J. Love. Spot size, adiabaticity and diffraction in tapered fibres. Electron. Lett., 23, 993-994(1987).

    [36] T. G. Tiecke, K. P. Nayak, J. D. Thompson, T. Peyronel, N. P. de Leon, V. Vuletić, M. D. Lukin. Efficient fiber-optical interface for nanophotonic devices. Optica, 2, 70-75(2015).

    [37] J. Liu, L. Yuan, J. Lei, W. Zhu, B. Cheng, Q. Zhang, Y. Song, C. Chen, H. Xiao. Micro-cantilever-based fiber optic hydrophone fabricated by a femtosecond laser. Opt. Lett., 42, 2459-2462(2017).

    [38] J. D. N. Cheeke. Fundamentals and Applications of Ultrasonic Waves(2016).

    [39] G. Ku, X. Wang, G. Stoica, L. V. Wang. Multiple-bandwidth photoacoustic tomography. Phys. Med. Biol., 49, 1329-1338(2004).

    [40] T. J. Allen, O. Ogunlade, E. Zhang, P. C. Beard. Large area laser scanning optical resolution photoacoustic microscopy using a fibre optic sensor. Biomed. Opt. Express, 9, 650-660(2018).

    [41] Y. Zhou, S. V. Tripathi, I. Rosman, J. Ma, P. Hai, G. P. Linette, M. L. Council, R. C. Fields, L. V. Wang, L. A. Cornelius. Noninvasive determination of melanoma depth using a handheld photoacoustic probe. J. Invest. Dermatol., 137, 1370-1372(2017).

    [42] R. A. Kruger, C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. Del Rio, D. Steed. Dedicated 3D photoacoustic breast imaging. Med. Phys., 40, 113301(2013).

    [43] R. S. Taylor, C. Hnatovsky. Trapping and mixing of particles in water using a microbubble attached to an NSOM fiber probe. Opt. Express, 12, 916-928(2004).

    [44] M. Xu, L. V. Wang. Universal back-projection algorithm for photoacoustic computed tomography. Phys. Rev. E, 71, 016706(2005).

    [45] C. Cai, X. Wang, K. Si, J. Qian, J. Luo, C. Ma. Feature coupling photoacoustic computed tomography for joint reconstruction of initial pressure and sound speed in vivo. Biomed. Opt. Express, 10, 3447-3462(2019).

    [46] J. Aguirre, M. Schwarz, N. Garzorz, M. Omar, A. Buehler, K. Eyerich, V. Ntziachristos. Precision assessment of label-free psoriasis biomarkers with ultra-broadband optoacoustic mesoscopy. Nat. Biomed. Eng., 1, 0068(2017).

    [47] M. Xu, L. V. Wang. Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction. Phys. Rev. E, 67, 056605(2003).

    [48] W. Xia, D. Piras, J. C. G. Van Hespen, S. Van Veldhoven, C. Prins, T. G. Van Leeuwen, W. Steenbergen, S. Manohar. An optimized ultrasound detector for photoacoustic breast tomography. Med. Phys., 40, 032901(2013).

    [49] S. Manohar, M. Dantuma. Current and future trends in photoacoustic breast imaging. Photoacoustics, 16, 100134(2019).

    [50] J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, P. C. Beard. Ultrasensitive plano-concave optical microresonators for ultrasound sensing. Nat. Photonics, 11, 714-719(2017).

    [51] K. Namura, K. Nakajima, M. Suzuki. Quasi-stokeslet induced by thermoplasmonic Marangoni effect around a water vapor microbubble. Sci. Rep., 7, 45776(2017).

    Jun Ma, Yang He, Xue Bai, Li-Peng Sun, Kai Chen, Kyunghwan Oh, Bai-Ou Guan. Flexible microbubble-based Fabry–Pérot cavity for sensitive ultrasound detection and wide-view photoacoustic imaging[J]. Photonics Research, 2020, 8(10): 1558
    Download Citation