• Journal of Innovative Optical Health Sciences
  • Vol. 10, Issue 6, 1742004 (2017)
Eitan Edrei, Milos Nikolic, and Giuliano Scarcelli*
Author Affiliations
  • Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
  • show less
    DOI: 10.1142/s1793545817420044 Cite this Article
    Eitan Edrei, Milos Nikolic, Giuliano Scarcelli. Improving localization precision of Brillouin measurements using spectral autocorrelation analysis[J]. Journal of Innovative Optical Health Sciences, 2017, 10(6): 1742004 Copy Citation Text show less
    References

    [1] J. G. Dil , “Brillouin scattering in condensed matter,” Rep. Progr. Phys. 45 (3), 285–334 (1982).

    [2] J. R. Sandercock , “Light-scattering from surface acoustic phonons in metals and semiconductors,” Solid State Commun. 26 (8), 547–551 (1978).

    [3] J. R. Sandercock , “Some recent developments in Brillouin scattering,” Rca Rev. 36 (1), 89–107 (1975). Google Scholar

    [4] J. M. Vaughan, J. T. Randall , “Brillouin scattering, density and elastic properties of the lens and cornea of the eye,” Nature 284 (5755), 489–491 (1980).

    [5] K. J. Koski, P. Akhenblit, K. McKiernan, J. L. Yarger , “Non-invasive determination of the complete elastic moduli of spider silks,” Nat. Mater. 12 (3), 262–267 (2013).

    [6] M. Shirasaki , “Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer,” Opt. Lett. 21 (5), 366–368 (1996).

    [7] G. Scarcelli, S. Yun , “Multistage VIPA etalons for high-extinction parallel Brillouin spectroscopy,” Opt. Express 19 (11), 10913–10922 (2011).

    [8] G. Scarcelli, S. H. Yun , “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photon. 2 (1), 39–43 (2008).

    [9] G. Scarcelli, P. Kim, S. Yun , “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J. 101 (6), 1539–1545 (2011).

    [10] G. Scarcelli, R. Pineda, S. Yun , “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci. 53 (1), 185–190 (2012).

    [11] F. Palombo et al., “Chemico-mechanical imaging of Barrett’s oesophagus,” J. Biophoton. 9 (7), 694–700 (2016).

    [12] G. Antonacci et al., “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc. Interface 12 (112), 20150843 (2015).

    [13] G. Scarcelli et al., “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12 (12), 1132–1134 (2015).

    [14] J. Zhang, X. Nou, H. Kim, G. Scarcelli , “Brillouin flow cytometry for label-free mechanical phenotyping of the nucleus,” Lab Chip. 17 (4), 663–670 (2017).

    [15] G. Antonacci, S. Braakman , “Biomechanics of subcellular structures by non-invasive Brillouin microscopy,” Sci. Rep. 6, 37217 (2016).

    [16] Z. Meng, S. Lopez, K. Meissner, V. Yakovlev , “Subcellular measurements of mechanical and chemical properties using dual Raman-Brillouin microspectroscopy,” J. Biophoton. 9 (3), 201–207 (2016).

    [17] K. Elsayad et al., “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging,” Sci. Signal. 9 (435), (2016), Art. no. ARTN rs5.

    [18] G. Scarcelli, S. Besner, R. Pineda, P. Kalout, S. H. Yun , “In vivo biomechanical mapping of normal and keratoconus corneas,” JAMA Ophthalmol. 133, 480–482 (2015).

    [19] C. Ballmann, J. Thompson, A. Traverso, Z. Meng, M. Scully, V. Yakovlev , “Stimulated Brillouin scattering microscopic imaging,” Sci. Rep. 5, 18139 (2015).

    [20] I. Remer, A. Bilenca , “High-speed stimulated Brillouin scattering spectroscopy at 780 nm,” Appl. Photon. 1 (6), 061301 (2016).

    [21] J. Zhang, A. Fiore, S. Yun, H. Kim, G. Scarcelli , “Line-scanning Brillouin microscopy for rapid non-invasive mechanical imaging,” Sci. Rep. 6, 35398 (2016).

    [22] K. V. Berghaus, S. H. Yun, G. Scarcelli , “High speed sub-GHz spectrometer for Brillouin scattering Analysis,” Jove-J. Vis. Exp. 106, 53468 (2015). Google Scholar

    [23] E. Edrei, M. Gather, G. Scarcelli , “Integration of spectral coronagraphy within VIPA-based spectrometers for high extinction Brillouin imaging,” Opt. Express 25, 6895 (2017).

    [24] A. Fiore, J. Zhang, P. Shao, S. Yun, G. Scarcelli , “High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media,” Appl. Phys. Lett. 108 (20), 203701 (2016).

    [25] P. Shao, S. Besner, J. Zhang, G. Scarcelli, S. Yun , “Etalon filters for Brillouin microscopy of highly scattering tissues,” Opt. Express 24 (19), 22232–22238 (2016).

    [26] K. Berghaus, J. Zhang, S. H. Yun, G. Scarcelli , “High-finesse sub-GHz-resolution spectrometer employing VIPA etalons of different dispersion,” Opt. Lett. 40 (19), 4436–4439 (2015).

    [27] I. Remer, A. Bilenca , “Background-free Brillouin spectroscopy in scattering media at 780 nm via stimulated Brillouin scattering,” Opt. Lett. 41 (5), 926–929 (2016).

    [28] G. Antonacci, G. Lepert, C. Paterson, P. Torok , “Elastic suppression in Brillouin imaging by destructive interference,” Appl. Phys. Lett. 107 (6), 061102 (2015).

    [29] Z. Meng, A. Traverso, V. Yakovlev , “Background clean-up in Brillouin microspectroscopy of scattering medium,” Opt. Express 22 (5), 5410–5415 (2014).

    [30] R. E. Thompson, D. R. Larson, W. W. Webb , “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82 (5), 2775–2783 (2002).

    [31] J. Fienup , “Reconstruction of an object from modulus of its Fourier-transform,” Opt. Lett. 3 (1), 27–29 (1978).

    [32] O. Katz, P. Heidmann, M. Fink, S. Gigan , “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photon. 8 (10), 784–790 (2014).

    [33] E. Edrei, G. Scarcelli , “Optical imaging through dynamic turbid media using the Fourier-domain shower-curtain effect,” Optica 3 (1), 71–74 (2016).

    [34] J. Bertolotti, E. van Putten, C. Blum, A. Lagendijk, W. Vos, A. Mosk , “Non-invasive imaging through opaque scattering layers,” Nature 491 (7423), 232–234 (2012).

    [35] E. Betzig et al., “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313 (5793), 1642–1645 (2006).

    [36] M. J. Rust, M. Bates, X. Zhuang , “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3 (10), 793–795 (2006).

    [37] R. J. Ober, S. Ram, E. S. Ward , “Localization accuracy in single-molecule microscopy,” Biophys. J. 86 (2), 1185–1200 (2004).

    Eitan Edrei, Milos Nikolic, Giuliano Scarcelli. Improving localization precision of Brillouin measurements using spectral autocorrelation analysis[J]. Journal of Innovative Optical Health Sciences, 2017, 10(6): 1742004
    Download Citation