• Acta Optica Sinica
  • Vol. 45, Issue 6, 0628004 (2025)
Zhongxing Zhao, Songlin Fu*, Junjie Chen, and wei Xie
Author Affiliations
  • College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua 321000, Zhejiang , China
  • show less
    DOI: 10.3788/AOS241185 Cite this Article Set citation alerts
    Zhongxing Zhao, Songlin Fu, Junjie Chen, wei Xie. Retrieval of Planetary Boundary Layer Height by Remote Sensing Fusion Based on Deep Forest[J]. Acta Optica Sinica, 2025, 45(6): 0628004 Copy Citation Text show less
    References

    [1] Stull R B. Stable boundary layer[M]. An introduction to boundary layer meteorology, 13, 499-543(1988).

    [2] Seibert P, Beyrich F, Gryning S E et al. Review and intercomparison of operational methods for the determination of the mixing height[J]. Atmospheric Environment, 34, 1001-1027(2000).

    [3] Wang W, He J C, Miao Z L et al. Space‒Time Linear Mixed-Effects (STLME) model for mapping hourly fine particulate loadings in the Beijing‒Tianjin‒Hebei Region, China[J]. Journal of Cleaner Production, 292, 125993(2021).

    [4] Ma Y, Huang R, Shi X M et al. Characteristics of planetary boundary layer for persistent PM2.5 heavy pollution in winter in Qingdao city[J]. Research of Environmental Sciences, 31, 42-52(2018).

    [5] Liu S Y, Liang X Z. Observed diurnal cycle climatology of planetary boundary layer height[J]. Journal of Climate, 23, 5790-5809(2010).

    [6] Wang F T, Yang T, Wang Z F et al. A comprehensive evaluation of planetary boundary layer height retrieval techniques using lidar data under different pollution scenarios[J]. Atmospheric Research, 253, 105483(2021).

    [7] Turner D D, Wulfmeyer V, Berg L K et al. Water vapor turbulence profiles in stationary continental convective mixed layers[J]. Journal of Geophysical Research: Atmospheres, 119, 11151-11165(2014).

    [8] Caicedo V, Rappenglück B, Lefer B et al. Comparison of aerosol lidar retrieval methods for boundary layer height detection using ceilometer aerosol backscatter data[J]. Atmospheric Measurement Techniques, 10, 1609-1622(2017).

    [9] Campbell J R, Hlavka D L, Welton E J et al. Full-time, eye-safe cloud and aerosol lidar observation at atmospheric radiation measurement program sites: instruments and data processing[J]. Journal of Atmospheric and Oceanic Technology, 19, 431-442(2002).

    [10] Tucker S C, Senff C J, Weickmann A M et al. Doppler lidar estimation of mixing height using turbulence, shear, and aerosol profiles[J]. Journal of Atmospheric and Oceanic Technology, 26, 673-688(2009).

    [11] Wang J B, Wang X Y, Ren C et al. Atmospheric material boundary layer height retrieval and analysis in Qingdao based on Doppler lidar[J]. Acta Optica Sinica, 44, 0601005(2024).

    [12] Liu N N, Luo T, Han Y J et al. Influence of typhoon peripheral circulation on atmospheric boundary layer structure in coastal areas[J]. Acta Optica Sinica, 41, 1901004(2021).

    [13] Menut L, Flamant C, Pelon J et al. Urban boundary-layer height determination from lidar measurements over the Paris Area[J]. Applied Optics, 38, 945-954(1999).

    [14] Compton J C, Delgado R, Berkoff T A et al. Determination of planetary boundary layer height on short spatial and temporal scales: a demonstration of the covariance wavelet transform in ground-based wind profiler and lidar measurements[J]. Journal of Atmospheric and Oceanic Technology, 30, 1566-1575(2013).

    [15] Banakh V A, Smalikho I N, Falits A V. Estimation of the height of the turbulent mixing layer from data of Doppler lidar measurements using conical scanning by a probe beam[J]. Atmospheric Measurement Techniques, 14, 1511-1524(2021).

    [16] Ong B T, Sugiura K, Zettsu K. Dynamic pre-training of Deep Recurrent Neural Networks for predicting environmental monitoring data[C], 760-765(2014).

    [17] Toledo D, Córdoba-Jabonero C, Gil-Ojeda M. Cluster analysis: a new approach applied to lidar measurements for atmospheric boundary layer height estimation[J]. Journal of Atmospheric and Oceanic Technology, 31, 422-436(2014).

    [18] Rieutord T, Aubert S, Machado T. Deriving boundary layer height from aerosol lidar using machine learning: KABL and ADABL algorithms[J]. Atmospheric Measurement Techniques, 14, 4335-4353(2021).

    [19] Liu Z X, Chang J H, Li H X et al. A highly robust atmospheric boundary layer height estimation method combining K-means and entropy weight method[J]. Acta Optica Sinica, 43, 1228004(2023).

    [20] Krishnamurthy R, Newsom R K, Berg L K et al. On the estimation of boundary layer heights: a machine learning approach[J]. Atmospheric Measurement Techniques, 14, 4403-4424(2021).

    [21] de Arruda Moreira G, Sánchez-Hernández G, Guerrero-Rascado J L et al. Estimating the urban atmospheric boundary layer height from remote sensing applying machine learning techniques[J]. Atmospheric Research, 266, 105962(2022).

    [22] Wang W, Pan Y N, Feng H H et al. Bagged tree model to retrieve planetary boundary layer heights by integrating lidar backscatter profiles and meteorological parameters[J]. Remote Sensing, 14, 1597(2022).

    [23] Chen H, Li C S, Yang W X et al. Deep balanced cascade forest: an novel fault diagnosis method for data imbalance[J]. ISA Transactions, 126, 428-439(2022).

    [24] Wang J, Wang H Q, Luo Y M et al. Psychological stress recognition from heart rate variability parameters based on field programmable gate arrays[J]. The Review of Scientific Instruments, 93, 115107(2022).

    [25] Min J S, Park M S, Chae J H et al. Integrated System for Atmospheric Boundary Layer Height Estimation (ISABLE) using a ceilometer and microwave radiometer[J]. Atmospheric Measurement Techniques, 13, 6965-6987(2020).

    Zhongxing Zhao, Songlin Fu, Junjie Chen, wei Xie. Retrieval of Planetary Boundary Layer Height by Remote Sensing Fusion Based on Deep Forest[J]. Acta Optica Sinica, 2025, 45(6): 0628004
    Download Citation