• Photonics Research
  • Vol. 9, Issue 12, 2388 (2021)
Feng Zhao1、2, Zicheng Shen2, Decheng Wang1, Bijie Xu1, Xiangning Chen1、3、*, and Yuanmu Yang2、4、*
Author Affiliations
  • 1School of Space Information, Space Engineering University, Beijing 101416, China
  • 2State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
  • 3e-mail: xn_chen_edu@163.com
  • 4e-mail: ymyang@tsinghua.edu.cn
  • show less
    DOI: 10.1364/PRJ.440185 Cite this Article Set citation alerts
    Feng Zhao, Zicheng Shen, Decheng Wang, Bijie Xu, Xiangning Chen, Yuanmu Yang. Synthetic aperture metalens[J]. Photonics Research, 2021, 9(12): 2388 Copy Citation Text show less
    References

    [1] P. Sandri, P. Mazzinghi, V. Da Deppo. Double Donut Schmidt Camera, a wide-field, large-aperture, and lightweight space telescope for the detection of ultrahigh energy cosmic rays. Appl. Opt., 57, 3078-3087(2018).

    [2] L. Yuan, J. N. Xie, Z. He, Y. Wang, J. Wang. Optical design and evaluation of airborne prism-grating imaging spectrometer. Opt. Express, 27, 17686-17700(2019).

    [3] N. Yu, F. Capasso. Flat optics with designer metasurfaces. Nat. Mater., 13, 139-150(2014).

    [4] M. Khorasaninejad, F. Capasso. Metalenses: versatile multifunctional photonic components. Science, 358, eaam8100(2017).

    [5] P. Lalanne, P. Chavel. Metalenses at visible wavelengths: past, present, perspectives. Laser Photon. Rev., 11, 1600295(2017).

    [6] P. Cheben, R. Halir, J. H. Schmid, H. A. Atwater, D. R. Smith. Subwavelength integrated photonics. Nature, 560, 565-572(2018).

    [7] M. L. Tseng, H.-H. Hsiao, C. H. Chu, M. K. Chen, G. Sun, A.-Q. Liu, D. P. Tsai. Metalenses: advances and applications. Adv. Opt. Mater., 6, 1800554(2018).

    [8] S. M. Kamali, E. Arbabi, A. Arbabi, A. Faraon. A review of dielectric optical metasurfaces for wavefront control. Nanophotonics, 7, 1041-1068(2018).

    [9] J. Engelberg, U. Levy. The advantages of metalenses over diffractive lenses. Nat. Commun., 11, 1991(2020).

    [10] S.-W. Moon, Y. Kim, G. Yoon, J. Rho. Recent progress on ultrathin metalenses for flat optics. iScience, 23, 101877(2020).

    [11] H. Li, X. Xiao, B. Fang, S. Gao, Z. Wang, C. Chen, Y. Zhao, S. Zhu, T. Li. Bandpass-filter-integrated multiwavelength achromatic metalens. Photon. Res., 9, 1384-1390(2021).

    [12] L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, S. Zhang. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun., 4, 2808(2013).

    [13] Y. Yang, W. Wang, P. Moitra, , D. P. Briggs, J. Valentine. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett., 14, 1394-1399(2014).

    [14] A. Arbabi, Y. Horie, M. Bagheri, A. Faraon. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol., 10, 937-943(2015).

    [15] X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, A. Alu. Ultrathin Pancharatnam–Berry metasurface with maximal cross-polarization efficiency. Adv. Mater., 27, 1195-1200(2015).

    [16] M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, F. Capasso. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190-1194(2016).

    [17] Y. Zhou, , H. Wang, J. R. Nolen, G. Gu, J. Valentine. Multilayer noninteracting dielectric metasurfaces for multiwavelength metaoptics. Nano Lett., 18, 7529-7537(2018).

    [18] W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. J. Shi, E. Lee, F. Capasso. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol., 13, 220-226(2018).

    [19] H. Liang, Q. Lin, X. Xie, Q. Sun, Y. Wang, L. Zhou, L. Liu, X. Yu, J. Zhou, T. F. Krauss, J. Li. Ultrahigh numerical aperture metalens at visible wavelengths. Nano Lett., 18, 4460-4466(2018).

    [20] G.-Y. Lee, G. Yoon, S.-Y. Lee, H. Yun, J. Cho, K. Lee, H. Kim, J. Rho, B. Lee. Complete amplitude and phase control of light using broadband holographic metasurfaces. Nanoscale, 10, 4237-4245(2018).

    [21] E. Arbabi, S. M. Kamali, A. Arbabi, A. Faraon. Full-Stokes imaging polarimetry using dielectric metasurfaces. ACS Photon., 5, 3132-3140(2018).

    [22] R. Z. Zhao, B. Sain, Q. S. Wei, C. C. Tang, X. W. Li, T. Weiss, L. L. Huang, Y. T. Wang, T. Zentgraf. Multichannel vectorial holographic display and encryption. Light Sci. Appl., 7, 95(2018).

    [23] N. A. Rubin, G. D’Aversa, P. Chevalier, Z. J. Shi, W. T. Chen, F. Capasso. Matrix Fourier optics enables a compact full-Stokes polarization camera. Science, 365, eaax1839(2019).

    [24] A. C. Overvig, S. Shrestha, S. C. Malek, M. Lu, A. Stein, C. Zheng, N. Yu. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase. Light Sci. Appl., 8, 92(2019).

    [25] C. Zhang, S. Divitt, Q. Fan, W. Zhu, A. Agrawal, Y. Lu, T. Xu, H. J. Lezec. Low-loss metasurface optics down to the deep ultraviolet region. Light Sci. Appl., 9, 55(2020).

    [26] Y. Ni, S. Chen, Y. Wang, Q. Tan, S. Xiao, Y. Yang. Metasurface for structured light projection over 120 degrees field of view. Nano Lett., 20, 6719-6724(2020).

    [27] R. Zhu, T. Qiu, J. Wang, S. Sui, C. Hao, T. Liu, Y. Li, M. Feng, A. Zhang, C. W. Qiu, S. Qu. Phase-to-pattern inverse design paradigm for fast realization of functional metasurfaces via transfer learning. Nat. Commun., 12, 2974(2021).

    [28] S. Wang, Z. L. Deng, Y. Wang, Q. Zhou, X. Wang, Y. Cao, B. O. Guan, S. Xiao, X. Li. Arbitrary polarization conversion dichroism metasurfaces for all-in-one full Poincaré sphere polarizers. Light Sci. Appl., 10, 24(2021).

    [29] F. Zhao, R. Lu, X. Chen, C. Jin, S. Chen, Z. Shen, C. Zhang, Y. Yang. Metalens-assisted system for underwater imaging. Laser Photon. Rev., 15, 2100097(2021).

    [30] T. Badloe, I. Kim, Y. Kim, J. Kim, J. Rho. Electrically tunable bifocal metalens with diffraction-limited focusing and imaging at visible wavelengths. Adv. Sci., 2102646(2021).

    [31] C. Zhang, H. Subbaraman, Q. Li, Z. Pan, J. G. Ok, T. Ling, C.-J. Chung, X. Zhang, X. Lin, R. T. Chen, L. J. Guo. Printed photonic elements: nanoimprinting and beyond. J. Mater. Chem. C, 4, 5133-5153(2016).

    [32] J.-S. Park, S. Zhang, A. She, W. T. Chen, P. Lin, K. M. A. Yousef, J.-X. Cheng, F. Capasso. All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography. Nano Lett., 19, 8673-8682(2019).

    [33] G. Yoon, K. Kim, D. Huh, H. Lee, J. Rho. Single-step manufacturing of hierarchical dielectric metalens in the visible. Nat. Commun., 11, 2268(2020).

    [34] G. Yoon, K. Kim, S.-U. Kim, S. Han, H. Lee, J. Rho. Printable nanocomposite metalens for high-contrast near-infrared imaging. ACS Nano, 15, 698-706(2021).

    [35] T. Hu, C.-K. Tseng, Y. H. Fu, Z. Xu, Y. Dong, S. Wang, K. H. Lai, V. Bliznetsov, S. Zhu, Q. Lin, Y. Gu. Demonstration of color display metasurfaces via immersion lithography on a 12-inch silicon wafer. Opt. Express, 26, 19548-19554(2018).

    [36] A. She, S. Zhang, S. Shian, D. R. Clarke, F. Capasso. Large area metalenses: design, characterization, and mass manufacturing. Opt. Express, 26, 1573-1585(2018).

    [37] S. Colburn, A. Zhan, A. Majumdar. Varifocal zoom imaging with large area focal length adjustable metalenses. Optica, 5, 825-831(2018).

    [38] A. B. Meinel. Aperture synthesis using independent telescopes. Appl. Opt., 9, 2501-2504(1970).

    [39] R. Barakat. Dilute aperture diffraction imagery and object reconstruction. Opt. Eng., 29, 131-139(1990).

    [40] E. Sabatke, J. Burge. Basic principles in the optical design of imaging multiple aperture systems. Proc. SPIE, 4832, 236-248(2002).

    [41] Y. S. Jiang, J. J. Zhang, Y. T. He, H. Y. Wang, J. Wang, J. Zhang. Optical aperture synthesis imaging with fractional Fourier-domain filtering. J. Opt. Soc. Am. A, 29, 295-302(2012).

    [42] T. Liu, J. Hu, L. Zhu, R. Zhou, C. Zhang, C. Wang, A. Zeng, H. Huang. Large effective aperture metalens based on optical sparse aperture system. Chin. Opt. Lett., 18, 100001(2020).

    [43] K. Akiyama, A. Alberdi, W. Alef, K. Asada, R. Azulay. First M87 event horizon telescope results. II. Array and instrumentation. Astrophys. J. Lett., 875, L2(2019).

    [44] S. Chung, D. W. Miller, O. L. De Weck. ARGOS testbed: study of multidisciplinary challenges of future spaceborne interferometric arrays. Opt. Eng., 43, 2156-2167(2004).

    [45] J. Turner, H. Estrada, M. Kneipp, D. Razansky. Universal weighted synthetic aperture focusing technique (W-SAFT) for scanning optoacoustic microscopy. Optica, 4, 770-778(2017).

    [46] S. Colburn, A. Zhan, A. Majumdar. Metasurface optics for full-color computational imaging. Sci. Adv., 4, eaar2114(2018).

    [47] L. Huang, J. Whitehead, S. Colburn, A. Majumdar. Design and analysis of extended depth of focus metalenses for achromatic computational imaging. Photon. Res., 8, 1613-1623(2020).

    [48] S. Tan, F. Yang, V. Boominathan, A. Veeraraghavan, G. V. Naik. 3D imaging using extreme dispersion in optical metasurfaces. ACS Photon., 8, 1421-1429(2021).

    [49] R. F. James, K. G. Douglas, L. Harrington, A. M. Kowalczyk, J. M. Jason, A. M. James. Comparison of reconstruction algorithms for images from sparse-aperture systems. Proc. SPIE, 4792, 1-8(2002).

    [50] D. Wang. Experimental study on imaging and image restoration of optical sparse aperture systems. Opt. Eng., 46, 103201(2007).

    [51] Y. Wu, M. Hui, W. Li, M. Liu, L. Dong, L. Kong, Y. Zhao. MTF improvement for optical synthetic aperture system via mid-frequency compensation. Opt. Express, 29, 10249-10264(2021).

    [52] M. J. E. Golay. Point arrays having compact, nonredundant autocorrelations. J. Opt. Soc. Am., 61, 272-273(1971).

    [53] N. J. Miller, M. P. Dierking, B. D. Duncan. Optical sparse aperture imaging. Appl. Opt., 46, 5933-5943(2007).

    [54] K. Matsushima, T. Shimobaba. Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields. Opt. Express, 17, 19662-19673(2009).

    [55] W. Richardson. Bayesian-based iterative method of image restoration. J. Opt. Soc. Am., 62, 55-59(1972).

    [56] L. Lucy. An iterative technique for the rectification of observed distributions. Astron. J., 79, 745(1974).

    [57] A. Horé, D. Ziou. Image quality metrics: PSNR vs. SSIM. 20th International Conference on Pattern Recognition, 2366-2369(2010).

    [58] H. Chen, Z. Cen, C. Wang, S. Lan, X. Li. Image restoration via improved Wiener filter applied to optical sparse aperture systems. Optik, 147, 350-359(2017).

    [59] M. Hui, Y. Wu, W. Li, M. Liu, L. Dong, L. Kong, Y. Zhao. Image restoration for synthetic aperture systems with a non-blind deconvolution algorithm via a deep convolutional neural network. Opt. Express, 28, 9929-9943(2020).

    [60] J. Tang, K. Wang, Z. Ren, W. Zhang, X. Wu, J. Di, G. Liu, J. Zhao. RestoreNet: a deep learning framework for image restoration in optical synthetic aperture imaging system. Opt. Laser Eng., 139, 106463(2021).

    [61] J. Engelberg, U. Levy. Achromatic flat lens performance limits. Optica, 8, 834-845(2021).

    [62] J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, F. Capasso. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett., 118, 113901(2017).

    [63] S. M. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. L. Wang, S. N. Zhu, D. P. Tsai. A broadband achromatic metalens in the visible. Nat. Nanotechnol., 13, 227-232(2018).

    [64] S. Colburn, A. Majumdar. Metasurface generation of paired accelerating and rotating optical beams for passive ranging and scene reconstruction. ACS Photon., 7, 1529-1536(2020).

    [65] E. Tseng, S. Colburn, J. Whitehead, L. Huang, S.-H. Baek, A. Majumdar, F. Heide. Neural nano-optics for high-quality thin lens imaging(2021).

    [66] W. Liu, D. Ma, Z. Li, H. Cheng, D.-Y. Choi, J. Tian, S. Chen. Aberration-corrected three-dimensional positioning with a single-shot metalens array. Optica, 7, 1706-1713(2020).

    [67] I. Kim, R. J. Martins, J. Jang, T. Badloe, S. Khadir, H.-Y. Jung, H. Kim, J. Kim, P. Genevet, J. Rho. Nanophotonics for light detection and ranging technology. Nat. Nanotechnol., 16, 508-524(2021).

    [68] R. C. Gonzalez, R. E. Woods. Digital Image Processing(2020).

    [69] L. Qian, Q. Wu, F. Wu, W. Shen. Study on imaging of dual three sub-apertures design. Acta Opt. Sin., 25, 1030-1035(2005).

    Feng Zhao, Zicheng Shen, Decheng Wang, Bijie Xu, Xiangning Chen, Yuanmu Yang. Synthetic aperture metalens[J]. Photonics Research, 2021, 9(12): 2388
    Download Citation