• Laser & Optoelectronics Progress
  • Vol. 52, Issue 7, 71205 (2015)
Zhang Hualin*, Chen Fuchang, and Yu Chaoqun
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop52.071205 Cite this Article Set citation alerts
    Zhang Hualin, Chen Fuchang, Yu Chaoqun. Wide Range Doppler Frequency Shift Measurement Based on Dual-Parallel Mach-Zehnder Modulator[J]. Laser & Optoelectronics Progress, 2015, 52(7): 71205 Copy Citation Text show less
    References

    [1] V C Chen. The Micro-Doppler Effect in Radar[M]. London: Artech House, 2011: 1-5.

    [2] M I Skolnik. Introduction to Radar Systems (3rd Edition)[M]. New York: McGraw-Hill, 2001: 1-15.

    [3] Liu Lizhe, Feng Dongsheng. Research on measure method of Doppler shift[J]. Radio Engineering, 2009, 39(5): 51-53.

    [4] J Yao. Microwave photonics[J]. J Lightwave Technol, 2009, 27(3): 314-335.

    [5] S Pan, J Fu, J Yao. Photonic approach to the simultaneous measurement of the frequency, amplitude, pulse width, and time of arrival of a microwave signal[J]. Opt Lett, 2012, 37(1): 7-9.

    [6] B Vidal, M A Piqueras, J Marti. Direction-of-arrival estimation of broadband microwave signals in phased-array antennas using photonic techniques[J]. J Lightwave Technol, 2006, 24(7): 2741-2745.

    [7] S L Pan, J P Yao. Instantaneous microwave frequency measurement using a photonic microwave filter pair[J]. IEEE Photon Technol Lett, 2010, 22(19): 1437-1439.

    [8] D P Wang, K Xu, J Dai, et al.. Photonic-assisted approach for instantaneous microwave frequency measurement with tunable range by using Mach-Zehnder interferometers[J]. Chin Opt Lett, 2013, 11(2): 020604.

    [9] X Zou, W Li, W Pan, et al.. Photonic approach to the measurement of time-difference-of-arrival and angle-of arrival of a microwave signal[J]. Opt Lett, 2012, 37(4): 755-757.

    [10] L V T Nguyen, D B Hunter. A photonic technique for microwave frequency measurement[J]. IEEE Photon Technol Lett, 2006, 18(9-12): 1188-1190.

    [11] X Zou, J Yao. An optical approach to microwave frequency measurement with adjustable measurement range and resolution[J]. IEEE Photon Technol Lett, 2008, 20(23): 1989-1991.

    [12] B Vidal, T Mengual, J Marti. Photonic technique for the measurement of frequency and power of multiple microwave signals[J]. IEEE Trans Microwave Theory Techn, 2010, 58(11): 3103-3108.

    [13] W Li, N H Zhu, L X Wang. Brillouin-assisted microwave frequency measurement with adjustable measurement range and resolution[J]. Opt Lett, 2012, 37(2): 166-168.

    [14] H L Zhang, S L Pan. Instantaneous frequency measurement with adjustable measurement range and resolution based on polarisation modulator[J]. Electron Lett, 2013, 49(4): 277-279.

    [15] H L Zhang, S L Pan. High resolution microwave frequency measurement using a dual-parallel Mach-Zehnder modulator[J]. IEEE Microwave Wireless Components Letters, 2013, 23(11): 623-625.

    [16] Wang Huan, Wu Xiangnong, Zhang Jing, et al.. Simulation of phase modulated instantaneous frequency measurement on optisystem[J]. Laser & Optoelectronics Progress, 2013, 50(1): 011202.

    [17] Zhang Hualin. Instantaneous microwave frequency measurement with wide range and high resolution based on dual polarization modulation[J]. Chinese J Lasers, 2014, 41(11): 1108004.

    Zhang Hualin, Chen Fuchang, Yu Chaoqun. Wide Range Doppler Frequency Shift Measurement Based on Dual-Parallel Mach-Zehnder Modulator[J]. Laser & Optoelectronics Progress, 2015, 52(7): 71205
    Download Citation