• Chinese Journal of Quantum Electronics
  • Vol. 37, Issue 4, 418 (2020)
Lei WANG*, Xiaoquan SUN, and Qing YE
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2020.04.004 Cite this Article
    WANG Lei, SUN Xiaoquan, YE Qing. Retroreflection analysis of wavefront coding imaging system[J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 418 Copy Citation Text show less
    References

    [2] Gong M L, He S F, Guo R, et al. Cat-eye effect reflected beam profiles of an optical system with sensor array[J]. Applied Optics, 2016, 55(16): 4461-4466.

    [3] Zhao Y Z, Sun H Y, Zheng Y H, et al. An approximate analytical propagation formula for Gaussian beams through a cat-eye optical lens under large incidence angle condition[J]. Chinese Physics Letters, 2011, 28(7): 074101.

    [4] Zhao Y Z, Sun H Y, Shan C H, et al. A new identification method aimed at optical targets using an active interference laser beam[J]. IEEE Photonics Technology Letters, 2014, 26(10): 1019-1022.

    [5] He S F, Meng Y, Gong M L, et al. Active laser detection system for recognizing surveillance devices[J]. Optics Communications, 2018, 426(3): 13-24.

    [6] Mieremet A L, Schleijpen R H M A, van Putten F J M, et al. Retroreflection reduction by masking apertures[J]. Optical Engineering, 2010, 49(4): 043202.

    [7] He S F, Meng Y, Gong M L. Freeform lens design to eliminate retroreflection for optical systems[J]. Applied Optics, 2018, 57(5): 1218-1224.

    [8] Song D L, Chang J, Zhao Y F, et al. Anti-detection technology of cat eye target based on decentered field lens[J]. Chinese Physics B, 2018, 27(9): 094220.

    [9] Chen Y, Gao M, Hu X L. Laser-echo reduction method based on a multifocal lens array[J]. Applied Optics, 2019, 58(24): 6629-6637.

    [10] He S F, Gong M L. Optimized phase mask to realize retro-reflection reduction for optical systems[J]. Journal of Optics, 2017, 19(10): 105610.

    [11] Dowski E R, Cathey W T. Extended depth of field through wave-front coding[J]. Applied Optics, 1995, 34(11): 1859-1866.

    [12] Wach H B, Dowski E R, Cathey W T. Control of chromatic focal shift through wave-front coding[J]. Applied Optics, 1998, 37(23): 5359-5367.

    [13] Cathey W T, Dowski E R. New paradigm for imaging systems[J]. Applied Optics, 2002, 41(29): 6080-6092.

    [14] Arines J, Hernandez R O, Sinzinger S, et al. Wavefront-coding technique for inexpensive and robust retinal imaging[J]. Optics Letters, 2014, 39(13): 3986-3988.

    [15] Koechner W. Solid-State Laser Engineering[M]. Springer, 2013.

    [16] Voelz D G, Roggemann M C. Digital simulation of scalar optical diffraction: Revisiting chirp function sampling criteria and consequences[J]. Applied Optics, 2009, 48(32): 6132-6142.

    [17] Schmidt J. Numerical simulation of optical wave propagation with examples in MATLAB[C]. Society of Photo-Optical Instrumentation Engineers, 2010.

    [18] Rose P, Diebel F, Boguslawski M, et al. Airy beam induced optical routing[J]. Applied Physics Letters, 2013, 102(10): 101101.

    [19] Chu X X. Evolution of an Airy beam in turbulence[J]. Optics Letters, 2011, 36(14): 2701-2703.

    [20] Besieris I M, Shaarawi A M. A note on an accelerating finite energy Airy beam[J]. Optics Letters, 2007, 32(16): 2447-2449.

    WANG Lei, SUN Xiaoquan, YE Qing. Retroreflection analysis of wavefront coding imaging system[J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 418
    Download Citation