• Acta Optica Sinica
  • Vol. 36, Issue 3, 306001 (2016)
Wang Qiaoni1、*, Yang Yuanhong1、2, He Jun3, and Wang Yiping3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/aos201636.0306001 Cite this Article Set citation alerts
    Wang Qiaoni, Yang Yuanhong, He Jun, Wang Yiping. Study of Fiber Bragg Grating Regeneration Process and Regeneration Model[J]. Acta Optica Sinica, 2016, 36(3): 306001 Copy Citation Text show less
    References

    [1] Stephen J Mihailov. Fiber Bragg grating sensors for harsh environments[J]. Sensors, 2012, 12: 1898-1918.

    [2] Yue Yin, Wang Yuan, Duan Jianli, et al.. Experimental study on fiber Bragg grating monitoring the crack of CFRP concrete composite arch[J]. Chinese J Lasers, 2015, 42(8): 0805004.

    [3] He Shaoling, Hao Fenghuan, Liu Pengfei, et al.. High Precision fiber Bragg grating pressure sensor with real- time temperature compensation[J]. Chinese J Lasers, 2015, 42(6): 0605003.

    [4] Qiaoni Wang, Yuanhong Yang, Jun He, et al.. Femtosecond laser inscribed Bragg gratings in gold-coated fiber for space application[C]. SPIE, 2015, 9634: 963460.

    [5] Yuhua Li, Minwei Yang, D N Wang, et al.. Fiber Bragg gratings with enhanced thermal stability by residual stress relaxation[J]. Optics Express, 2009, 17(22): 19785-19790.

    [6] Grobnic D, Mihailov S J, Smelser C W, et al.. Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications[J]. IEEE Photonics Technology Letters, 2004, 16(11): 2505-2507.

    [7] Yang Zhangcheng, Xu Hanfeng, Dong Xinyong. Research development of high- temperature resistant fiber gratings[J]. Laser & Optoelectronics Progress, 2012, 49(5): 050003.

    [8] Yang Huangzhou, Xue Guangqiao, S Das, et al.. Thermal regenerated grating operation at temperatures up to 1400 ℃ using new class of multimaterial glass-based photosensitive fiber[J]. Optics Letters, 2014, 39(22): 6438-6441.

    [9] Wang Tao, He Dawei, Wang Yongsheng, et al.. Spectral repeatability of regenerated fiber gratings prepared by high temperature annealing [J]. Spectroscopy and Spectral Analysis, 2013, 33(5): 1411-1414.

    [10] Fokine M. Formation of thermally stable chemical composition gratings in optical fibers[J]. JOSA B, 2002, 19(8): 1759-1765.

    [11] S Bandyopadhyay, J Canning, M Stevenson, et al.. Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm[J]. Optics Letters, 2008, 33(16): 1917-1919.

    [12] J Canning, M Stevenson, S Bandyopadhyay, et al.. Extreme silica optical fibre gratings[J]. Sensors, 2008, 8(10): 6448-6452.

    [13] S Bandyopadhyay, J Canning, P Biswas, et al.. A study of regenerated gratings produced on germanosilicate fibers by high temperature annealing[J]. Optics Express, 2010, 19(2): 1198-1206.

    [14] J Canning, E Lindner, K Cook, et al.. Regeneration of gratings by post-H2 loading[C]. Proceedings of the Quantum Electronics Conference & Lasers and Electro-Optics, 2011: 142-144.

    [15] J Canning. Regenerated gratings for optical sensing in harsh environments[C]. Optical Society of America, 2013: Btu3E.3.

    [16] J Canning, S Bandyopadhyay, P Biswas, et al.. Regenerated Fiber Bragg Gratings[M]. Rijeka: Frontiers in Guided Wave Optics and Optoelectronics, 2010: 363-383.

    [17] J Canning, M Stevensona, J Fentona, et al.. Strong regenerated gratings[C]. SPIE, 2009, 7503: 750326.

    [18] Eric Lindner, Christoph Chojetztki, Sven Brueckner, et al.. Regenerated fiber Bragg gratings in Non-Hydrogen-Loaded photosensitive fibers for high-temperature sensor networks[J]. SPIE, 2010, 7677: 76770H.

    [19] K Cook, C Smelser, J Canning, et al.. Regenerated femtosecond fiber Bragg gratings[C]. SPIE, 2012, 8351: 835111.

    [20] Antonio Bueno, Damien Kinet, Patrice Megret, et al.. Fast thermal regeneration of fiber Bragg gratings[J]. Optics Letters, 2013, 38(20): 4178-4181.

    [21] K Cook, Li-Yang Shao, J Canning. Regeneration and helium: regenerating Bragg gratings in helium-loaded germanosilicate optical fibre [J]. Optical Materials Express, 2012, 2(12): 1733-1742.

    [22] Stephen RBaker, Howard N Rourke, Vernon Baker, et al.. Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber[J]. Journal of Lightwave Technology, 1997, 15(8): 1470-1477.

    [23] T Erdogan, V Mizrahi, PJ Lemaire, et al.. Decay of ultraviolet-induced fiber Bragg gratings[J]. Journal of Applied Physics, 1994, 76(1): 73-80.

    [24] T Erdogan. Fiber grating spectra[J]. Journal of Lightwave Technology, 1997, 15(8): 1277-1294.

    CLP Journals

    [1] Liu Chunjuan, Yang Chaoshan, Lian Le, Xu Xiaorui, Hu Yanwei. Cladding-Modulation Bragg Grating with Asymmetric Structure[J]. Acta Optica Sinica, 2017, 37(5): 505002

    [2] Liu Yanchao, Fang Jin, Xu Chong, Wei Bin, Guan Yibiao, Fan Maosong, Yan Xufeng, Gao Chao. Feasibility of Gold-Plated Fiber Bragg Grating Sensors Used in Lithium Ion Battery in-Situ Detection[J]. Laser & Optoelectronics Progress, 2017, 54(4): 40602

    [3] Nie Ming, Zhang Dongsheng, Wu Mengqi, Zhang Chunfeng. Growth Law of High Temperature Resistance Regenerated Fiber Grating[J]. Laser & Optoelectronics Progress, 2017, 54(5): 50601

    Wang Qiaoni, Yang Yuanhong, He Jun, Wang Yiping. Study of Fiber Bragg Grating Regeneration Process and Regeneration Model[J]. Acta Optica Sinica, 2016, 36(3): 306001
    Download Citation