• Journal of Innovative Optical Health Sciences
  • Vol. 7, Issue 1, 1350055 (2014)
ALEXEY N. PAVLOV1、*, ALEXEY I. NAZIMOV1, OLGA N. PAVLOVA1, VLADISLAV V. LYCHAGOV1, VALERY V. TUCHIN1, OLGA A. BIBIKOVA2, SERGEY S. SINDEEV2, and O V SEMYACHKINA-GLUSHKOVSKAYA2
Author Affiliations
  • 1Department of Physics, Saratov State University 83 Astrakhanskaya str., Saratov 410012, Russia
  • 2Department of Biology, Saratov State University 83 Astrakhanskaya str., Saratov 410012, Russia
  • show less
    DOI: 10.1142/s1793545813500557 Cite this Article
    ALEXEY N. PAVLOV, ALEXEY I. NAZIMOV, OLGA N. PAVLOVA, VLADISLAV V. LYCHAGOV, VALERY V. TUCHIN, OLGA A. BIBIKOVA, SERGEY S. SINDEEV, O V SEMYACHKINA-GLUSHKOVSKAYA. WAVELET-BASED ANALYSIS OF CEREBROVASCULAR DYNAMICS IN NEWBORN RATS WITH INTRACRANIAL HEMORRHAGES[J]. Journal of Innovative Optical Health Sciences, 2014, 7(1): 1350055 Copy Citation Text show less
    References

    [1] J. Baun, "Neonatal intracranial hemorrhage," J. Diagn. Med. Sonogr. 7, 121–131 (1991).

    [2] R. W. Leech, P. Kohnen, "Subependymal and intraventricular hemorrhages in the newborn," Am. J. Pathol. 77, 465–475 (1974).

    [3] B. C. Lee, A. E. Grassi, A. Schechner, "Neonatal intraventricular hemorrhage: A serial computed tomography study," J. Comput. Assist. Tomogr. 3, 483–490 (1979).

    [4] P. Ballabh, "Intraventricular hemorrhage in premature infants: Mechanism of disease," Pediatr. Res. 67, 1–8 (2010).

    [5] P. Ballabh, A. Braun, M. Nedergaard, "Anatomic analysis of blood vessels in germinal matrix, cerebral cortex, and white matter in developing infants," Pediatr. Res. 56, 117–124 (2004).

    [6] D. W. Busija, D. D. Heistad, "Factors involved in the physiological regulation of cerebral circulation," Rev. Physiol. Biochem. Pharmacol. 101, 161–211 (1984).

    [7] T. A. McCalden, "Sympathetic control of the cerebral circulation," J. Auton. Pharmacol. 1, 421–431 (1981).

    [8] P. A. Cassaglia, R. I. Griffiths, A. M. Walker, "Sympathetic nerve activity in the superior cervical ganglia increases in response to imposed increases in arterial pressure," Am. J. Physiol. 294, R1255– R1261 (2008).

    [9] J. L. Di Gennaro, D. C. Mack, A. Malakouti, J. J. Zimmerman, W. Armstead, M. S. Vavilala, "Use and effect of vasopressors after pediatric traumatic brain injury," Dev. Neurosci. 32, 420–430 (2011).

    [10] P. Sookplung, A. Siriussawakul, A. Malakouti, D. Sharma, J. Wang, M. Souter, R. Chesnut, M. Vavilala, "Vasopressor use and effect on blood pressure after severe adult traumatic brain injury," Neurocrit. Care 15, 46–54 (2011).

    [11] S. N. Kroppenstedt, U. W. Thomale, M. Griebenow, O. W. Sakowitz, K. D. Schaser, P. S. Mayr, A. W. Unterberg, J. F. Stover, "Effects of early and late intravenous norepinephrine infusion on cerebral perfusion, microcirculation, brain-tissue oxygenation, and edema formation in brain-injured rats," Crit. Care Med. 31, 2211–2221 (2003).

    [12] D. Pfister, S. P. Strebel, L. A. Steiner, "Effects of catecholamines on cerebral blood vessels in patients with traumatic brain injury," Eur. J. Anaesthesiol. 42, 98–103 (2008).

    [13] P. Sandor, "Nervous control of the cerebrovascular system: Doubts and facts," Neurochem. Int. 35, 237–259 (1999).

    [14] J. H. Meek, L. Tyszczuk, C. E. Elweel, J. S. Wyatt, "Low cerebral blood flow is a risk factor for severe intraventricular hemorrhage," Arch. Dis. Child. Fetal Neonatal Ed. 81, F15–F18 (1999).

    [15] R. J. Thorburn, A. P. Lipscomb, A. L. Stewart, E. O. Reynolds, P. L. Hope, "Timing and antecedents of periventricular haemorrhage and of cerebral atrophy in very preterm infants," Early Human Dev. 7, 221–238 (1982).

    [16] L. Jordan, A. Hillis, "Hemorrhagic stroke in children," Pediatr. Neurol. 36, 73–80 (2007).

    [17] L. Vries, F. Groenendaal, "Patterns of neonatal hypoxicischemic brain injury," Neuroradiology 52, 555–566 (2010).

    [18] L. C. Jordan, J. T. Kleinman, A. E. Hillis, "Intracerebral hemorrhage volume predicts poor neurologic outcome in children," Stroke 40, 1666– 1671 (2009).

    [19] J. K. Lynch, K. B. Nelson, "Epidemiology of perinatal stroke," Curr. Opin. Pediatr. 13, 499–505 (2003).

    [20] L. L. Beslow, D. J. Licht, S. E. Smith, P. B. Storm, G. G. Heuer, R. A. Zimmerman, A. M. Feiler, S. E. Kasner, R. N. Ichord, L. C. Jordan, "Predictors of outcome in childhood intracerebral hemorrhage: A prospective consecutive cohort study," Stroke 41, 313–318 (2010).

    [21] W. D. Lo, "Childhood hemorrhagic stroke: An important but understudied problem," J. Child Neurol. 26, 1174–1185 (2011).

    [22] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178–1181 (1991).

    [23] P. H. Tomlins, R. K. Wang, "Theory, developments and applications of optical coherence tomography," J. Phys. D Appl. Phys. 38, 2519 (2005).

    [24] W. Drexler, J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications, Springer, New York (2008).

    [25] S. G. Mallat, A Wavelet Tour of Signal Processing, Academic Press, New York (1998).

    [26] P. S. Addison, The Illustrated Wavelet Transform Handbook: Introduction Theory and Applications in Science, Engineering, Medicine and Finance, IOP Publishing, Bristol (2002).

    [27] S. Thurner, M. C. Feurstein, M. C. Teich, "Multiresolution wavelet analysis of heartbeat intervals discriminates healthy patients from those with cardiac pathology," Phys. Rev. Lett. 80, 1544– 1547 (1998).

    [28] P. Ch. Ivanov, L. A. Nunes Amaral, A. L. Goldberger, S. Havlin, M. G. Rosenblum, Z. R. Struzik, H. E. Stanley, "Multifractality in human heartbeat dynamics," Nature 399, 461–465 (1999).

    [29] A. N. Pavlov, V. S. Anishchenko, "Multifractal analysis of complex signals," Phys. Usp. 50, 819–834 (2007).

    [30] O. V. Semyachkina-Glushkovskaya, V. V. Lychagov, O. A. Bibikova, I. A. Semyachkin-Glushkovskiy, S. S. Sindeev, E. M. Zinchenko, M. M. Kassim, H. A. Braun, F. Al-Fatle, L. A. Hassani, V. V. Tuchin, "The assessment of pathological changes in cerebral blood flow in hypertensive rats with stress-induced intracranial hemorrhage using Doppler OCT: Particularities of arterial and venous alterations," J. Photon. Laser. Med. 2, 109–116 (2013).

    [31] J. C. Spall, Introduction to Stochastic Search and Optimization, Wiley, New Jersey (2003).

    [32] M. C. Fu, "Optimization for simulation: Theory vs. practice," INFORMSJ. Comput. 14, 192–227 (2002).

    [33] H. S. Ghazi-Birry, W. R. Brown, D. M. Moody, V. R. Challa, S. M. Block, D. M. Reboussin, "Human germinal matrix: Venous origin of hemorrhage and vascular characteristics," Am. J. Neuroradiol. 18, 219–229 (1997).

    [34] B. G. Carter, W. Butt, A. Taylor, "ICP and CPP: Excellent predictors of long-term outcome in severely brain-injured children," Childs Nerv. Syst. 24, 245–251 (2008).

    [35] A. Català-Temprano, G. C. Teruel, F. J. C. Lasaosa, O. M. Pons, J. A. Noguera, R. A. Palomeque, "Intracranial pressure and cerebral perfusion pressure as risk factors in children with traumatic brain injury," J. Neurosurg. 106, 463–466 (2007).

    ALEXEY N. PAVLOV, ALEXEY I. NAZIMOV, OLGA N. PAVLOVA, VLADISLAV V. LYCHAGOV, VALERY V. TUCHIN, OLGA A. BIBIKOVA, SERGEY S. SINDEEV, O V SEMYACHKINA-GLUSHKOVSKAYA. WAVELET-BASED ANALYSIS OF CEREBROVASCULAR DYNAMICS IN NEWBORN RATS WITH INTRACRANIAL HEMORRHAGES[J]. Journal of Innovative Optical Health Sciences, 2014, 7(1): 1350055
    Download Citation