• Laser & Optoelectronics Progress
  • Vol. 56, Issue 9, 092701 (2019)
Fengjiao Li, Xuefeng Zou, Liang Cui, Lei Yang, Xiaoying Li, and Zhanhua Huang*
Author Affiliations
  • Key Laboratory of Opto-Electronic Information Technology, Ministry of Education, School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.3788/LOP56.092701 Cite this Article Set citation alerts
    Fengjiao Li, Xuefeng Zou, Liang Cui, Lei Yang, Xiaoying Li, Zhanhua Huang. Portable Polarization-Entangled Quantum Photon Source[J]. Laser & Optoelectronics Progress, 2019, 56(9): 092701 Copy Citation Text show less
    References

    [1] Tittel W, Weihs G. Photonic entanglement for fundamental tests and quantum communication[J]. Quantum Information and Computation, 1, 3-56(2001). http://dl.acm.org/citation.cfm?id=2011335

    [2] Zhang W, Zhou Q, Huang Y D et al. -04-10(2013).

    [3] Shih Y H, Sergienko A V, Rubin M H et al. Two-photon entanglement in type-II parametric down-conversion[J]. Physical Review A, 50, 23-28(1994). http://europepmc.org/abstract/MED/9910864

    [4] Kwiat P G, Waks E, White A G et al. Ultrabright source of polarization-entangled photons[J]. Physical Review A, 60, R773-R776(1999).

    [5] Takesue H, Inoue K. Generation of polarization-entangled photon pairs and violation of Bell's inequality using spontaneous four-wave mixing in fiber loop[J]. Physical Review A, 70, 031802(2004). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT04000004000010000018000001&idtype=cvips&gifs=Yes

    [6] Ekert A K. Quantum cryptography based on Bell's theorem[J]. Physical Review Letters, 67, 661-663(1991). http://prola.aps.org/abstract/PRL/v67/i6/p661_1

    [7] Shor P W. Scheme for reducing decoherence in quantum computer memory[J]. Physical Review A, 52, R2493-R2496(1995). http://onlinelibrary.wiley.com/resolve/reference/PMED?id=9912632

    [8] Pittman T B, Shih Y H, Strekalov D V et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 52, R3429-R3432(1995). http://www.ncbi.nlm.nih.gov/pubmed/9912767

    [9] Giovannetti V, Lloyd S, Maccone L. Quantum metrology[J]. Physical Review Letters, 96, 010401(2006).

    [10] Yang L, Li X Y, Wang B S. Experimental schemes for developing fiber-based source of entangled photon pairs[J]. Acta Physica Sinica, 57, 4933-4940(2008).

    [11] Zeng Z L, Zhu Y, Lu L et al. Research of peak count rate scanning method for single photon detector used in high precision optical transfer time measurement[J]. Chinese Journal of Lasers, 42, 0508003(2015).

    [12] Li X Y, Voss P L, Sharping J E et al. Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band[J]. Physical Review Letters, 94, 053601(2005). http://www.ncbi.nlm.nih.gov/pubmed/15783637/

    [13] Li X Y, Zhang X T, Wang K et al. A portable all-fiber source of quantum-correlated photon-pairs[J]. Acta Optica Sinica, 33, 0927003(2013).

    [14] Wang K. All-fiber quantum-correlated photon-pair source[D]. Tianjin: Tianjin University(2012).

    [15] Li X Y, Liang C, Lee K F et al. Integrable optical-fiber source of polarization-entangled photon pairs in the telecom band[J]. Physical Review A, 73, 052301(2006). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT04000006000005000035000001&idtype=cvips&gifs=Yes

    Fengjiao Li, Xuefeng Zou, Liang Cui, Lei Yang, Xiaoying Li, Zhanhua Huang. Portable Polarization-Entangled Quantum Photon Source[J]. Laser & Optoelectronics Progress, 2019, 56(9): 092701
    Download Citation