• Acta Optica Sinica
  • Vol. 40, Issue 9, 0902001 (2020)
Feng Guo1、2, Dehuan Kong1、2, Qiang Zhang1、2, Yebing Wang1、**, and Hong Chang1、2、*
Author Affiliations
  • 1Key Laboratory of Time & Frequency Primary Standards, Chinese Academy of Sciences, Xi'an, Shaanxi 710600, China;
  • 2School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/AOS202040.0902001 Cite this Article Set citation alerts
    Feng Guo, Dehuan Kong, Qiang Zhang, Yebing Wang, Hong Chang. System Development and Clock Transition Spectroscopy Detection of Transportable 87Sr Optical Clock[J]. Acta Optica Sinica, 2020, 40(9): 0902001 Copy Citation Text show less
    References

    [1] Ludlow A D, Boyd M M, Ye J et al. Optical atomic clocks[J]. Reviews of Modern Physics, 87, 637-701(2015).

    [2] Nicholson T L, Campbell S L, Hutson R B et al. Systematic evaluation of an atomic clock at 2×10 -18 total uncertainty[J]. Nature Communications, 6, 6896(2015).

    [3] Campbell S L, Hutson R B, Marti G E et al. A Fermi-degenerate three-dimensional optical lattice clock[J]. Science, 358, 90-94(2017).

    [4] Grebing C, Al-Masoudi A, Dörscher S et al. Realization of a timescale with an accurate optical lattice clock[J]. Optica, 3, 563-569(2016).

    [5] Ludlow A D, Ye J. Progress on the optical lattice clock[J]. Comptes Rendus Physique, 16, 499-505(2015).

    [6] Poli N, Schioppo M, Vogt S et al. A transportable strontium optical lattice clock[J]. Applied Physics B, 117, 1107-1116(2014).

    [7] Ohmae N, Sakama S, Katori H. High-stability optical frequency transfer with all-fiber architecture for optical lattice clocks[J]. Electronics and Communications in Japan, 102, 43-48(2019).

    [8] Altschul B, Bailey Q G, Blanchet L et al. Quantum tests of the Einstein equivalence principle with the STE-QUEST space mission[J]. Advances in Space Research, 55, 501-524(2015).

    [9] Grotti J, Koller S, Vogt S et al. Geodesy and metrology with a transportable optical clock[J]. Nature Physics, 14, 437-441(2018).

    [10] Kolkowitz S, Pikovski I, Langellier N et al. Gravitational wave detection with optical lattice atomic clocks[J]. Physical Review D, 94, 124043(2016).

    [11] Lopez O, Haboucha A, Chanteau B et al. Ultra-stable long distance optical frequency distribution using the internet fiber network[J]. Optics Express, 20, 23518-23526(2012).

    [12] Bercy A, Lopez O, Pottie P E et al. Ultrastable optical frequency dissemination on a multi-access fibre network[J]. Applied Physics B, 122, 189(2016).

    [13] Koller S B, Grotti J, Vogt S et al. Transportable optical lattice clock with 7×10 -17 uncertainty[J]. Physical Review Letter, 118, 073601(2017).

    [14] Zhang S N, Zhang X G, Cui J Z et al. Compact Rb optical frequency standard with 10 -15 stability[J]. Review of Scientific Instruments, 88, 103106(2017).

    [15] Chang P Y, Zhang S N, Shang H S et al. Stabilizing diode laser to 1 Hz-level Allan deviation with atomic spectroscopy for Rb four-level active optical frequency standard[J]. Applied Physics B, 125, 196(2019).

    [16] Shang H S, Zhang X G, Zhang S N et al. Miniaturized calcium beam optical frequency standard using fully-sealed vacuum tube with 10 -15 instability[J]. Optics Express, 25, 30459-30467(2017).

    [17] Shang J J, Cao J, Cui K F et al. A compact, sub-Hertz linewidth 729 nm laser for a miniaturized 40Ca+ optical clock[J]. Optics Communications, 382, 410-414(2017).

    [18] Cao J, Zhang P, Shang J et al. A compact, transportable single-ion optical clock with 7.8×10 -17 systematic uncertainty[J]. Applied Physics B, 123, 112(2017).

    [19] Han J X, Lu X T, Lu B Q et al. Influence of cut-off speed on atomic number of blue magneto-optical trap in Zeeman slower of strontium optical clock[J]. Acta Optica Sinica, 38, 0702001(2018).

    [20] Xie Y L, Lu B Q, Liu H et al. Achieving the second Doppler cooling and measuring the temperature of strontium atoms[J]. Acta Sinica Quantum Optica, 21, 136-142(2015).

    [21] Ido T, Katori H. Recoil-free spectroscopy of neutral Sr atoms in the lamb-dicke regime[J]. Physical Review Letters, 91, 053001(2003).

    [22] Brown R, Phillips N, Beloy K et al. Hyperpolarizability and operational magic wavelength in an optical lattice clock[J]. Physical Review Letters, 119, 253001(2017).

    [23] Guo Y, Yin M J, Xu Q F et al. Interrogation of spin polarized clock transition in strontium optical lattice clock[J]. Acta Physica Sinica, 67, 070601(2018).

    [24] McDonald M, McGuyer B, Iwata G et al. Thermometry via light shifts in optical lattices[J]. Physical Review Letters, 114, 023001(2015).

    [25] Blatt S, Thomsen J W, Campbell G K et al. Rabi spectroscopy and excitation inhomogeneity in a one-dimensional optical lattice clock[J]. Physical Review A, 80, 052703(2009).

    [26] Boyd M M. High precision spectroscopy of strontium in an optical lattice: towards a new standard for frequency and time[D]. Colorado: University of Colorado, 99(2007).

    [27] Wang Y B, Yin M J, Ren J et al. Strontium optical lattice clock at the national time service center[J]. Chinese Physics B, 27, 023701(2018).

    Feng Guo, Dehuan Kong, Qiang Zhang, Yebing Wang, Hong Chang. System Development and Clock Transition Spectroscopy Detection of Transportable 87Sr Optical Clock[J]. Acta Optica Sinica, 2020, 40(9): 0902001
    Download Citation