• Chinese Optics Letters
  • Vol. 20, Issue 8, 081403 (2022)
Pengcheng Fang1、2, Huanyao Sun1, Yan Wang1, Yanqi Xu1, and Qunfeng Chen1、*
Author Affiliations
  • 1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/COL202220.081403 Cite this Article Set citation alerts
    Pengcheng Fang, Huanyao Sun, Yan Wang, Yanqi Xu, Qunfeng Chen. Transfer of laser frequency from 729 nm to 1.5 µm with precision at the level of 10−20[J]. Chinese Optics Letters, 2022, 20(8): 081403 Copy Citation Text show less
    References

    [1] D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, U. Sterr. 1.5 µm lasers with sub-10 mHz linewidth. Phys. Rev. Lett., 118, 263202(2017).

    [2] E. Oelker, R. Hutson, C. Kennedy, L. Sonderhouse, T. Bothwell, A. Goban, D. Kedar, C. Sanner, J. Robinson, G. Marti, D. G. Matei, T. Legero, M. Giunta, R. Holzwarth, F. Riehle, U. Sterr, J. Ye. Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks. Nat. Photonics, 13, 714(2019).

    [3] J. M. Robinson, E. Oelker, W. R. Milner, W. Zhang, T. Legero, D. G. Matei, F. Riehle, U. Sterr, J. Ye. Crystalline optical cavity at 4 K with thermal-noise-limited instability and ultralow drift. Optica, 6, 240(2019).

    [4] C. Lisdat, G. Grosche, N. Quintin, C. Shi, S. M. F. Raupach, C. Grebing, D. Nicolodi, F. Stefani, A. Al-Masoudi, S. Dörscher, S. Häfner, J.-L. Robyr, N. Chiodo, S. Bilicki, E. Bookjans, A. Koczwara, S. Koke, A. Kuhl, F. Wiotte, F. Meynadier, E. Camisard, M. Abgrall, M. Lours, T. Legero, H. Schnatz, U. Sterr, H. Denker, C. Chardonnet, Y. Le Coq, G. Santarelli, A. Amy-Klein, R. Le Targat, J. Lodewyck, O. Lopez, P.-E. Pottie. A clock network for geodesy and fundamental science. Nat. Commun., 7, 12443(2016).

    [5] J. Grotti, S. Koller, S. Vogt, S. Hafner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, D. Calonico. Geodesy and metrology with a transportable optical clock. Nat. Phys., 14, 437(2018).

    [6] Frequency ratio measurements at 18-digit accuracy using an optical clock network. Nature, 591, 564(2021).

    [7] L.-S. Ma, P. Jungner, J. Ye, J. L. Hall. Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path. Opt. Lett., 19, 1777(1994).

    [8] K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, H. Schnatz. A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place. Science, 336, 441(2012).

    [9] S. Droste, F. Ozimek, T. Udem, K. Predehl, T. W. Hänsch, H. Schnatz, G. Grosche, R. Holzwarth. Optical-frequency transfer over a single-span 1840 km fiber link. Phys. Rev. Lett., 111, 110801(2013).

    [10] S. M. Raupach, A. Koczwara, G. Grosche. Brillouin amplification supports 1 × 10−20 uncertainty in optical frequency transfer over 1400 km of underground fiber. Phys. Rev. A, 92, 021801(2015).

    [11] L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, S. A. Diddams. Optical frequency synthesis and comparison with uncertainty at the 10−19 level. Science, 303, 1843(2004).

    [12] H. R. Telle, B. Lipphardt, J. Stenger. Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements. Appl. Phys. B, 74, 1(2002).

    [13] D. Nicolodi, B. Argence, W. Zhang, R. Le Targat, G. Santarelli, Y. Le Coq. Spectral purity transfer between optical wavelengths at the 10−18 level. Nat. Photonics, 8, 219(2014).

    [14] Y. Yao, Y. Jiang, H. Yu, Z. Bi, L. Ma. Optical frequency divider with division uncertainty at the 10−21 level. Nat. Sci. Rev., 3, 463(2016).

    [15] E. Benkler, B. Lipphardt, T. Puppe, R. Wilk, F. Rohde, U. Sterr. End-to-end topology for fiber comb based optical frequency transfer at the 10−21 level. Opt. Express, 27, 36886(2019).

    [16] J. Stenger, H. Schnatz, C. Tamm, H. R. Telle. Ultraprecise measurement of optical frequency ratios. Phys. Rev. Lett., 88, 073601(2002).

    [17] K. Cui, S. Chao, C. Sun, S. Wang, P. Zhang, Y. Wei, J. Cao, H. Shu, X. Huang. Evaluation of the performance of a 40Ca+ − 27Al+ optical clock(2020).

    [18] B. Zhang, Y. Huang, Y. Hao, H. Zhang, M. Zeng, H. Guan, K. Gao. Improvement in the stability of a 40Ca+ ion optical clock using the Ramsey method. J. Appl. Phys., 128, 143105(2020).

    [19] Y. Huang, B. Zhang, M. Zeng, Y. Hao, H. Zhang, H. Guan, Z. Chen, M. Wang, K. Gao. A liquid nitrogen-cooled Ca+ optical clock with systematic uncertainty of 3 × 10−18(2021).

    [20] J. Zhang, K. Deng, J. Luo, Z. Lu. Direct laser cooling Al+ ion optical clocks. Chin. Phys. Lett., 34, 050601(2017).

    [21] K. Kashiwagi, Y. Nakajima, M. Wada, S. Okubo, H. Inaba. Multi-branch fiber comb with relative frequency uncertainty at 10−20 using fiber noise difference cancellation. Opt. Express, 26, 8831(2018).

    Data from CrossRef

    [1] Rui Xiao, Yanqi Xu, Yan Wang, Huanyao Sun, Qunfeng Chen. Transportable 30?cm optical cavity based ultrastable lasers with beating instability of $$2\times 10^{-16}$$. Applied Physics B, 128, 220(2022).

    Pengcheng Fang, Huanyao Sun, Yan Wang, Yanqi Xu, Qunfeng Chen. Transfer of laser frequency from 729 nm to 1.5 µm with precision at the level of 10−20[J]. Chinese Optics Letters, 2022, 20(8): 081403
    Download Citation