• Infrared and Laser Engineering
  • Vol. 48, Issue 1, 103002 (2019)
Guo Bo
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/irla201948.0103002 Cite this Article
    Guo Bo. Recent advances in multi-wavelength ultrafast lasers based on nonlinear effects of 2D materials(invited)[J]. Infrared and Laser Engineering, 2019, 48(1): 103002 Copy Citation Text show less
    References

    [1] Keller U. Recent developments in compact ultrafast lasers[J]. Nature, 2003, 424(6950): 831.

    [2] Suh M G, Yang Q F, Yang K Y, et al. Microresonator soliton dual-combspectroscopy [J]. Science, 2016, 354(6312): 600-613.

    [3] Li J, Yi X, Lee H, et al. Electro-optical frequency division and stablemicrowave synthesis [J]. Science, 2014, 345(6194): 309-313.

    [4] Agrawal G P. Nonlinear Fiber Optics[M]. Berlin: Springer, 2000: 195-211.

    [5] Schlager J B, Kawanishi S, Saruwatari M. Dual wavelength pulse generation using mode-locked erbium-doped fibre ring laser [J]. Electronics Letters, 1991, 27(22): 2072-2073.

    [6] Li S, Chan K T. Electrical wavelength tunable and multiwavelength actively mode-locked fiber ring laser [J]. Applied Physics Letters, 1998, 72(16): 1954-1956.

    [7] Zhao Y, Shu C. A fiber laser for effective generation of tunable single- and dual-wavelength mode-locked optical pulses[J]. Applied Physics Letters, 1998, 72(13): 1556-1558.

    [8] Bakhshi B, Andrekson P A. Dual-wavelength 10-GHz actively mode-locked erbium fiber laser [J]. IEEE Photonics Technology Letters, 1999, 11(11): 1387-1389.

    [9] Deparis O, Kiyan R, Salik E, et al. Round-trip time and dispersion optimization in a dual-wavelength actively mode-locked Er-doped fiber laser including nonchirped fiber Bragg gratings[J]. IEEE Photonics Technology Letters, 1999, 11(10): 1238-1240.

    [10] Town G E, Chen L, Smith P W E. Dual-wavelength mode-locked fiber laser [J]. IEEE Photonics Technology Letters, 2000, 12(11): 1459-1461.

    [11] Pudo D, Chen L R. Actively mode-locked, quadruple-wavelength fibre laser with pump-controlled wavelength switching [J]. Electronics Letters, 2003, 39(3): 272-274.

    [12] Lou J W, Carruthers T F, Currie M. 4×10 GHz mode-locked multiple-wavelength fiber laser [J]. IEEE Photonics Technology Letters, 2004, 16(1): 51-53.

    [13] Yao J, Yao J, Deng Z. Multiwavelength actively mode-locked fiber ring laser with suppressed homogeneous line broadening and reduced supermodenoise [J]. Optics Express, 2004, 12(19): 4529-4534.

    [14] Chen Z, Ma S, Dutta N K. Multiwavelength fiber ring laser based on a semiconductor and fiber gain medium[J]. Optics Express, 2009, 17(3): 1234-1239.

    [15] Noske D U, Guy M J, Rottwitt K, et al. Dual-wavelength operation of a passively mode-locked "figure-of-eight" ytterbium-erbium fibre soliton laser[J]. Optics Communications, 1994, 108(4-6): 297-301.

    [16] Yun L, Liu X, Mao D. Observation of dual-wavelength dissipative solitons in a figure-eight erbium-doped fiber laser [J]. Optics Express, 2012, 20(19): 20992-20997.

    [17] Ning Q Y, Wang S K, Luo A P, et al. Bright-dark pulse pair in a figure-eight dispersion-managed passively mode-locked fiber laser [J]. IEEE Photonics Journal, 2012, 4(5): 1647-1652.

    [18] Krzempek K, Sobon G, Sotor J, et al. Fully-integrated dual-wavelength all-fiber source for mode-locked square-shaped mid-IR pulse generation via DFG in PPLN[J]. Optics Express, 2015, 23(25): 32080-32086.

    [19] Jin X, Wang X, Wang X, et al. Tunable multiwavelength mode-locked Tm/Ho-doped fiber laser based on a nonlinear amplified loop mirror[J]. Applied Optics, 2015, 54(28): 8260-8264.

    [20] Shao Z, Qiao X, Rong Q, et al. Generation of dual-wavelength square pulse in a figure-eight erbium-doped fiber laser with ultra-large net-anomalous dispersion [J]. Applied Optics, 2015, 54(22): 6711-6716.

    [21] Posada-Ramírez B, Durán-Sánchez M, Alvarez-Tamayo R I, et al. Study of a Hi-Bi FOLM for tunable and dual-wavelength operation of a thulium-doped fiber laser [J]. Optics Express, 2017, 25(3): 2560-2568.

    [22] Matsas V J, Newson T P, Richardson D J, et al. Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation[J]. Electronics Letters, 1992, 28(15): 1391-1393.

    [23] Gong Y D, Tian X L, Tang M, et al. Generation of dual wavelength ultrashort pulse outputs from a passive mode locked fiber ring laser [J]. Optics Communications, 2006, 265(2): 628-631.

    [24] Zhang Z, Zhan L, Xu K, et al. Multiwavelength fiber laser with fine adjustment, based on nonlinear polarization rotation and birefringence fiber filter[J]. Optics Letters, 2008, 33(4): 324-326.

    [25] Chen Z, Sun H, Ma S, et al. Dual-wavelength mode-locked erbium-doped fiber ring laser using highly nonlinear fiber [J]. IEEE Photonics Technology Letters, 2008, 20(24): 2066-2068.

    [26] Chen W C, Luo Z C, Xu W C. The interaction of dual wavelength solitons in fiber laser [J]. Laser Physics Letters, 2009, 6(11): 816.

    [27] Luo Z C, Luo A P, Xu W C, et al. Modulation instability induced by cross-phase modulation in a dual-wavelength dispersion-managed soliton fiber ring laser[J]. Applied Physics B, 2010, 100(4): 811-820.

    [28] Luo Z C, Luo A P, Xu W C, et al. Tunable multiwavelength passively mode-locked fiber ring laser using intracavity birefringence-induced comb filter [J]. IEEE Photonics Journal, 2010, 2(4): 571-577.

    [29] Luo A P, Luo Z C, Xu W C, et al. Tunable and switchable dual-wavelength passively mode-locked Bi-doped all-fiber ring laser based on nonlinear polarization rotation [J]. Laser Physics Letters, 2011, 8(8): 601-605.

    [30] Zhu X, Wang C, Liu S, et al. Switchable dual-wavelength and passively mode-locked all-normal-dispersion Yb-doped fiber lasers [J]. IEEE Photonics Technology Letters, 2011, 23(14): 956-958.

    [31] Mao D, Liu X, Wang L, et al. Dual-wavelength step-like pulses in an ultra-large negative-dispersion fiber laser [J]. Optics Express, 2011, 19(5): 3996-4001.

    [32] Zhang H, Tang D, Zhao L, et al. Dual-wavelength domain wall solitons in a fiber ring laser [J]. Optics Express, 2011, 19(4): 3525-3530.

    [33] Yun L, Han D. Evolution of dual-wavelength fiber laser from continuous wave to soliton pulses [J]. Optics Communications, 2012, 285(24): 5406-5409.

    [34] Zhang Z X, Xu Z W, Zhang L, et al. Tunable and switchable dual-wavelength dissipative soliton generation in an all-normal-dispersion Yb-doped fiber laser with birefringence fiber filter [J]. Optics Express, 2012, 20(24): 26736-26742.

    [35] Mao D, Lu H. Formation and evolution of passively mode-locked fiber soliton lasers operating in a dual-wavelength regime[J]. Journal of The Optical Society of America B-Optical Physics, 2012, 29(10): 2819-2826.

    [36] Lin H, Guo C, Ruan S, et al. Tunable and switchable dual-wavelength dissipative soliton operation of a weak-birefringence all-normal-dispersion Yb-doped fiber laser [J]. IEEE Photonics Journal, 2013, 5(5): 1501807-1501807.

    [37] Wang X, Zhu Y, Zhou P, et al. Tunable, multiwavelength Tm-doped fiber laser based on polarization rotation and four-wave-mixing effect [J]. Optics Express, 2013, 21(22): 25977-25984.

    [38] Yan Z, Li X, Tang Y, et al. Tunable and switchable dual-wavelength Tm-doped mode-locked fiber laser by nonlinear polarization evolution[J]. Optics Express, 2015, 23(4): 4369-4376.

    [39] Yan Z, Tang Y, Sun B, et al. Switchable multi-wavelength Tm-doped mode-locked fiber laser [J]. Optics Letters, 2015, 40(9): 1916-1919.

    [40] Zhang Z, Mou C, Yan Z, et al. Switchable dual-wavelength Q-switched and mode-locked fiber lasers using a large-angle tilted fiber grating [J]. Optics Express, 2015, 23(2): 1353-1360.

    [41] Wang S, Zhao Z, Kobayashi Y, et al. Wavelength-spacing controllable, dual-wavelength synchronously mode locked Er:fiber laser oscillator based on dual-branch nonlinear polarization rotation technique [J]. Optics Express, 2016, 24(25): 28228-28238.

    [42] Feehan J S, Ilday F O, Brocklesby W S, et al. Simulations and experiments showing the origin of multi-wavelength mode locking in femtosecond, Yb-fiber lasers [J]. Journal of The Optical Society of America B-Optical Physics, 2016, 33(8): 1668-1676.

    [43] Zhang H, Tang D Y, Wu X, et al. Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser [J]. Optics Express, 2009, 17(15): 12692-12697.

    [44] Luo Z, Luo A, Xu W, et al. Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and inline birefringence comb filter [J]. IEEE Photonics Journal, 2011, 3(1): 64-70.

    [45] Luo A P, Luo Z, Xu W C, et al. Switchable dual-wavelength passively mode-locked fiber ring laser using SESAM and cascaded fiber Bragg gratings [J]. Laser Physics, 2011, 21(2): 395-398.

    [46] Li J, Luo H, Wang L, et al. Mid-infrared passively switched pulsed dual wavelength Ho3+ -doped fluoride fiber laser at 3 μm and 2 μm [J]. Scientific Reports, 2015, 5(1): 10770-10770.

    [47] Rigaud P, Kermene V, Simos C, et al. Dual-wavelength synchronous ultrashort pulses from a mode-locked Yb-doped multicore fiber laser with spatially dispersed gain [J]. Optics Express, 2015, 23(19): 25308-25315.

    [48] Wu Z, Fu S, Chen C, et al. Dual-state dissipative solitons from an all-normal-dispersion erbium-doped fiber laser: continuous wavelength tuning and multi-wavelength emission [J]. Optics Letters, 2015, 40(12): 2684-2687.

    [49] Zhang Y, Yang C, Feng Z, et al. Dual-wavelength passively Q-switched single-frequency fiber laser [J]. Optics Express, 2016, 24(14): 16149-16155.

    [50] Waritanant T, Major A. Discretely selectable multiwavelength operation of a semiconductor saturable absorber mirror mode-locked Nd:YVO4 laser[J]. Optics Letters, 2017, 42(17): 3331-3334.

    [51] Li J, Wang Y, Zhang E, et al. Coexistence of noise-like pulse and high repetition rate harmonic mode-locking in a dual-wavelength mode-locked Tm-doped fiber laser[J]. Optics Express, 2017, 25(15): 17992-17200.

    [52] Zhao X, Zheng Z, Liu L, et al. Switchable, dual-wavelength passively mode-locked ultrafast fiber laser based on a single-wall carbon nanotube mode-locker and intracavity loss tuning [J]. Optics Express, 2011, 19(2): 1168-1173.

    [53] Zhao X, Zheng Z, Liu L, et al. Fast, long-scan-range pump-probe measurement based on asynchronous sampling using a dual-wavelength mode-locked fiber laser [J]. Optics Express, 2012, 20(23): 25584-25589.

    [54] Liu X, Han D, Sun Z, et al. Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes [J]. Scientific Reports, 2013, 3(1): 2718-2718.

    [55] Chen G W, Li W L, Yang H R, et al. Switchable dual-wavelength fiber laser mode-locked by carbon nanotubes [J]. Journal of Modern Optics, 2015, 62(5): 353-357.

    [56] Jiang K, Wu Z, Fu S, et al. Switchable dual-wavelength mode-locking of thulium-doped fiber laser Based on SWNTs [J]. IEEE Photonics Technology Letters, 2016, 28(19): 2019-2022.

    [57] Geim A K. Graphene: status and prospects [J]. Science, 2009, 324(5934): 1530-1534.

    [58] Zhang H. Ultrathin two-dimensional nanomaterials[J]. ACS Nano, 2015, 9(10): 9451-9469.

    [59] Coleman J N, Lotya M, O'Neill A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials [J]. Science, 2011, 331(6017): 568-571.

    [60] Nicolosi V, Chhowalla M, Kanatzidis M G, et al. Liquid exfoliation of layered materials[J]. Science, 2013, 340(6139): 1226419.

    [61] Bao Q, Zhang H, Wang Y, et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers [J]. Advanced Functional Materials, 2009, 19(19): 3077-3083.

    [62] Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics [J]. Nature Photonics, 2010, 4(9): 611-622.

    [63] Xia F, Wang H, Xiao D, et al. Two-dimensional material nanophotonics [J]. Nature Photonics, 2014, 8(12): 899-907.

    [64] Zhang H, Lu S, Zheng J, et al. Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics[J]. Optics Express, 2014, 22(6): 7249-7260.

    [65] Sobon G. Mode-locking of fiber lasers using novel two-dimensional nanomaterials: graphene and topological insulators [J]. Photonics Research, 2015, 3(2): A56-A63.

    [66] Yu S, Wu X, Wang Y, et al. 2D Materials for optical modulation: challenges and opportunities[J]. Advanced Materials, 2017, 29(14): 1606128.

    [67] Liu X, Guo Q, Qiu J. Emerging low-dimensional materials for nonlinear optics and ultrafast photonics [J]. Advanced Materials, 2017, 29(14): 1605886.

    [68] Guo B. 2D noncarbon materials-based nonlinear optical devices for ultrafast photonics[J]. Chinese Optics Letters, 2018, 16(2): 020004.

    [69] Liu Z, Wang Y, Zhang X, et al. Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes [J]. Applied Physics Letters, 2009, 94(2): 021902.

    [70] Hendry E, Hale P J, Moger J, et al. Coherent nonlinear optical response of graphene [J]. Physical Review Letters, 2010, 105(9): 097401.

    [71] Hsieh D, Qian D, Wray L, et al. A topological Dirac insulator in a quantum spin Hall phase[J]. Nature, 2008, 452(7190): 970.

    [72] Chen Y L, Analytis J G, Chu J H, et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3 [J]. Science, 2009, 325(5937): 178-181.

    [73] Xia Y, Qian D, Hsieh D, et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface [J]. Nature Physics, 2009, 5(6): 398.

    [74] Zhang Y, He K, Chang C Z, et al. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit [J]. Nature Physics, 2010, 6(8): 584.

    [75] Moore J E. The birth of topological insulators[J]. Nature, 2010, 464(7286): 194.

    [76] Hasan M Z, Kane C L. Colloquium: topological insulators [J]. Reviews of Modern Physics, 2010, 82(4): 3045.

    [77] Qi X L, Zhang S C. Topological insulators and superconductors [J]. Reviews of Modern Physics, 2011, 83(4): 1057.

    [78] Bernard F, Zhang H, Gorza S P, et al. Towards mode-locked fiber laser using topological insulators [C]//Nonlinear Photonics. Optical Society of America, 2012: NTh1A. 5.

    [79] Lu S, Zhao C, Zou Y, et al. Third order nonlinear optical property of Bi2Se3 [J]. Optics Express, 2013, 21(2): 2072-2082.

    [80] Chen S, Zhao C, Li Y, et al. Broadband optical and microwave nonlinear response in topological insulator [J]. Optical Materials Express, 2014, 4(4): 587-596.

    [81] Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides [J]. Nature Nanotechnology, 2012, 7(11): 699.

    [82] Wang K, Wang J, Fan J, et al. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets [J]. ACS Nano, 2013, 7(10): 9260-9267.

    [83] Sun J, Gu Y J, Lei D Y, et al. Mechanistic understanding of excitation-correlated nonlinear optical properties in MoS2 nanosheets and nanodots: the role of exciton resonance [J]. ACS Photonics, 2016, 3(12): 2434-2444.

    [84] Ling X, Wang H, Huang S, et al. The renaissance of black phosphorus [J]. Proceedings of the National Academy of Sciences, 2015: 201416581.

    [85] Wang X, Lan S. Optical properties of black phosphorus [J]. Advances in Optics and Photonics, 2016, 8(4): 618-655.

    [86] Dhanabalan S C, Ponraj J S, Guo Z, et al. Emerging trends in phosphorene fabrication towards next generation devices [J]. Advanced Science, 2017, 4(6): 1600305.

    [87] Lu S B, Miao L L, Guo Z N, et al. Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material [J]. Optics Express, 2015, 23(9): 11183-11194.

    [88] Martinez A, Sun Z. Nanotube and graphene saturable absorbers for fibre lasers [J]. Nature Photonics, 2013, 7(11): 842.

    [89] Luo Z, Zhou M, Weng J, et al. Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser[J]. Optics Letters, 2010, 35(21): 3709-3711.

    [90] Luo Z, Zhou M, Wu D, et al. Graphene-induced nonlinear four-wave-mixing and its application to multiwavelength Q-switched rare-earth-doped fiber lasers[J]. Journal of Lightwave Technology, 2011, 29(18): 2732-2739.

    [91] Wang Z T, Chen Y, Zhao C J, et al. Switchable dual-wavelength synchronously Q-switched erbium-doped fiber laser based on graphene saturable absorber[J]. IEEE Photonics Journal, 2012, 4(3): 869-876.

    [92] Ahmad H, Zulkifli M Z, Muhammad F D, et al. Passively Q-switched 11-channel stable brillouin erbium-doped fiber laser with graphene as the saturable absorber[J]. IEEE Photonics Journal, 2012, 4(5): 2050-2056.

    [93] Zhao J, Wang Y, Yan P, et al. Graphene-oxide-based Q-switched fiber laser with stable five-wavelength operation[J]. Chinese Physics Letters, 2012, 29(11): 114206.

    [94] Lou F, Zhao R, He J, et al. Nanosecond-pulsed, dual-wavelength, passively Q-switched ytterbium-doped bulk laser based on few-layer MoS2 saturable absorber[J]. Photonics Research, 2015, 3(2): A25-A29.

    [95] Gao Y J, Zhang B Y, Song Q, et al. Dual-wavelength passively Q-switched Nd: GYSGG laser by tungsten disulfide saturable absorber[J]. Applied Optics, 2016, 55(18): 4929-4932.

    [96] Zhang H, He J, Wang Z, et al. Dual-wavelength, passively Q-switched Tm: YAP laser with black phosphorus saturable absorber[J]. Optical Materials Express, 2016, 6(7): 2328-2335.

    [97] Zhao Y, Li X, Xu M, et al. Dual-wavelength synchronously Q-switched solid-state laser with multi-layered graphene as saturable absorber[J]. Optics Express, 2013, 21(3): 3516-3522.

    [98] Wang B, Yu H, Zhang H, et al. Topological insulator simultaneously Q-switched dual-wavelength Nd:Lu2O3 laser[J]. IEEE Photonics Journal, 2014, 6(3): 1-7.

    [99] Lou F, Zhao R, He J, et al. Nanosecond-pulsed, dual-wavelength, passively Q-switched ytterbium-doped bulk laser based on few-layer MoS2 saturable absorber[J]. Photonics Research, 2015, 3(2): A25-A29.

    [100] Guo J, Zhang H, Li P. Graphene Q-switched eye-safe Nd:Y3Al5O12 ceramic dual-wavelength laser[J]. Applied Optics, 2015, 54(22): 6694-6697.

    [101] Chu H, Zhao S, Li T, et al. Dual-wavelength passively Q-switched Nd, Mg: LiTaO3 laser with a monolayer graphene as saturable absorber[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(1): 343-347.

    [102] Sun Y J, Lee C K, Xu J L, et al. Passively Q-switched tri-wavelength Yb3+: GdAl3(BO3)4 solid-state laser with topological insulator Bi2Te3 as saturable absorber[J]. Photonics Research, 2015, 3(3): A97-A101.

    [103] Liu J, Liu J, Guo Z, et al. Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region[J]. Optics Express, 2016, 24(26): 30289-30295.

    [104] Zhang H, He J, Wang Z, et al. Dual-wavelength, passively Q-switched Tm: YAP laser with black phosphorus saturable absorber[J]. Optical Materials Express, 2016, 6(7): 2328-2335.

    [105] Luo Z Q, Wang J Z, Zhou M, et al. Multiwavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field[J]. Laser Physics Letters, 2012, 9(3): 229.

    [106] Lau K Y, Bakar M H A, Muhammad F D, et al. Dual-wavelength, mode-locked erbium-doped fiber laser employing a graphene/polymethyl-methacrylate saturable absorber[J]. Optics Express, 2018, 26(10): 12790-12800.

    [107] Zhao J, Wang Y, Ruan S, et al. Three operation regimes with an L-band ultrafast fiber laser passively mode-locked by graphene oxide saturable absorber[J]. JOSA B, 2014, 31(4): 716-722.

    [108] Guo B, Ouyang Q, Li S, et al. Dual-wavelength soliton laser based on the graphene ternary composite [J]. Chinese Journal of Lasers, 2017, 44(7): 0703012.

    [109] Guo B, Yao Y, Yang Y F, et al. Topological insulator: Bi2Se3/polyvinyl alcohol film-assisted multi-wavelength ultrafast erbium-doped fiber laser[J]. Journal of Applied Physics, 2015, 117(6): 063108.

    [110] Guo B, Yao Y, Yang Y F, et al. Tunable multi-wavelength mode-locked fiber laser with topological insulator: Bi2Se3/PVA solution[C]//Optoelectronic Devices and Integration. Optical Society of America, 2015: OW2C. 4.

    [111] Guo B, Yao Y. Tunable triple-wavelength mode-locked fiber laser with topological insulator Bi2Se3 solution[J]. Optical Engineering, 2016, 55(8): 081315.

    [112] Guo B, Yao Y, Yan P G, et al. Dual-wavelength soliton mode-locked fiber laser with a WS2-based fiber taper[J]. IEEE Photonics Technology Letters, 2016, 28(3): 323-326.

    [113] Guo B, Li S, Fan Y, et al. Versatile soliton emission from a WS2 mode-locked fiber laser[J]. Optics Communications, 2018, 406: 66-71.

    [114] Zhao R, Li J, Zhang B, et al. Triwavelength synchronously mode-locked fiber laser based on few-layered black phosphorus[J]. Applied Physics Express, 2016, 9(9): 092701.

    [115] Yun L. Black phosphorus saturable absorber for dual-wavelength polarization-locked vector soliton generation[J]. Optics Express, 2017, 25(26): 32380-32385.

    [116] Liu M, Zhao N, Liu H, et al. Dual-wavelength harmonically mode-locked fiber laser with topological insulator saturable absorber [J]. IEEE Photonics Technology Letters, 2014, 26(10): 983-986.

    [117] Luo Z, Huang Y, Wang J, et al. Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited fiber-taper [J]. IEEE Photonics Technology Letters, 2012, 24(17): 1539-1542.

    [118] Huang S, Wang Y, Yan P, et al. Tunable and switchable multi-wavelength dissipative soliton generation in a graphene oxide mode-locked Yb-doped fiber laser[J]. Optics Express, 2014, 22(10): 11417-11426.

    [119] Guo B, Yao Y, Yang Y F, et al. Dual-wavelength rectangular pulse erbium-doped fiber laser based on topological insulator saturable absorber [J]. Photonics Research, 2015, 3(3): 94-99.

    [120] Zhao N, Liu M, Liu H, et al. Dual-wavelength rectangular pulse Yb-doped fiber laser using a microfiber-based graphene saturable absorber[J]. Optics Express, 2014, 22(9): 10906-10913.

    [121] Gao L, Zhu T, Huang W, et al. Vector rectangular-shape laser based on reduced graphene oxide interacting with a long fiber taper[J]. Applied Optics, 2014, 53(28): 6452-6456.

    [122] Song Q, Wang G, Zhang B, et al. Passively Q-switched mode-locked dual-wavelength Nd: GYSGG laser using graphene oxide saturable absorber [J]. Optics Communications, 2015, 347: 64-67.

    [123] Vengsarkar A M, Lemaire P J, Judkins J B, et al. Long-period fiber gratings as band-rejection filters [C]//Optical Fiber Communication Conference. Optical Society of America, 1995: PD4.

    [124] Intrachat K, Kutz J N. Theory and simulation of passive modelocking dynamics using a long-period fiber grating [J]. IEEE Journal of Quantum Electronics, 2003, 39(12): 1572-1578.

    [125] Karar A S, Smy T, Steele A L. Nonlinear dynamics of a passively mode-locked fiber laser containing a long-period fiber grating [J]. IEEE Journal of Quantum Electronics, 2008, 44(3): 254-261.

    [126] Guo B, Yang W L. Ultra-long-period grating as a novel tool for multi-wavelength ultrafast photonics[C]//AOPC 2017: Laser Components, Systems, and Applications. International Society for Optics and Photonics, 2017, 10457: 104572R.

    [127] Manakov S V. On the theory of two-dimensional stationary self-focusing of electromagnetic waves[J]. Soviet Physics-JETP, 1974, 38(2): 248-253.

    [128] Guo B, Yao Y, Tian J J, et al. Observation of bright-dark soliton pair in a fiber laser with topological insulator[J]. IEEE Photonics Technology Letters, 2015, 27(7): 701-704.

    [129] Guo B, Yao Y, Xiao J J, et al. Topological insulator-assisted dual-wavelength fiber laser delivering versatile pulse patterns[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(2): 8-15.

    [130] Li K X, Song Y R, Tian J R, et al. Analysis of bound-soliton states in a dual-wavelength mode-locked fiber laser based on Bi2Se3[J]. IEEE Photonics Journal, 2017, 9(3): 1-9.

    [131] Zhao R, Li G, Zhang B, et al. Multi-wavelength bright-dark pulse pair fiber laser based on rhenium disulfide [J]. Optics Express, 2018, 26(5): 5819-5826.

    Guo Bo. Recent advances in multi-wavelength ultrafast lasers based on nonlinear effects of 2D materials(invited)[J]. Infrared and Laser Engineering, 2019, 48(1): 103002
    Download Citation