• Infrared and Laser Engineering
  • Vol. 48, Issue 6, 603013 (2019)
Chen Ni1, Zuo Chao2, and Byoungho Lee1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/irla201948.0603013 Cite this Article
    Chen Ni, Zuo Chao, Byoungho Lee. 3D imaging based on depth measurement[J]. Infrared and Laser Engineering, 2019, 48(6): 603013 Copy Citation Text show less
    References

    [1] Watanabe T M, Sato T, Gonda K, et al. Three-dimensional nanometry of vesicle transport in living cells using dual-focus imaging optics[J]. Biochem Biophys Res Commun, 2007, 359: 1-7.

    [2] Tanida J, Kumagai T, Yamada K, et al. Thin observation module by bound optics (TOMBO): concept and experimental verification[J]. Appl Opt, 2001, 40: 1806-1813.

    [3] Yamaguchi M. Light-field and holographic three-dimensional displays [J]. J Opt Soc Am A, 2016, 33: 2348-2364.

    [4] Martínez-Corral M, Javidi B. Fundamentals of 3D imaging and displays: A tutorial on integral imaging, light-field, and plenoptic systems[J]. Adv Opt Photonics, 2018, 10: 512-566.

    [5] Bruning J H, Herriott D R, Gallagher J E, et al. Digital wavefront measuring interferometer for testing optical surfaces and lenses[J]. Appl Opt, 1974, 13: 2693-2703.

    [6] Wolf E. Three-dimensional structure determination of semi-transparent objects from holographic data[J]. Opt Commun,1969, 1: 153-156.

    [7] Born M, Wolf E. Principles of Optics[M]. 7th ed. Cambridge: Cambridge University Press, 1999.

    [8] Saleh B E, Teich M C, Saleh B E. Fundamentals of Photonics[M]. 2nd ed. Wiley: New York, 2007.

    [9] Gershun A. The light field[J]. J Math Phys, 1939, 18: 51-151.

    [10] Lam E Y. Computational photography with plenoptic camera and light field capture: Tutorial[J]. J Opt Soc Am, 2015, 32: 2021-2032.

    [11] Zheng J, Micó V, Gao P. Resolution enhancement in phase microscopy: A review[J]. Preprints, 2018,

    [12] Hong J, Kim Y, Choi H J, et al. Three-Dimensional display technologies of recent interest: principles, status, and issues[J]. Appl Opt, 2011, 50: H87-H115.

    [13] Park S G, Yeom J, Jeong Y, et al. Recent issues on integral imaging and its applications[J]. J Inf Dis, 2014, 15: 37-46.

    [14] Zhao Y, Kwon K C, Piao Y L, et al. Depth-layer weighted prediction method for a full-color polygon-based holographic system with real objects[J]. Opt Lett, 2017, 42: 2599-2602.

    [15] Li G, Hong K, Yeom J, et al. Acceleration method for computer generated spherical hologram calculation of real objects using graphics processing unit[J]. Chin Opt Lett, 2014, 12: 060016.

    [16] Mait J N, Euliss G W, Athale R A. Computational imaging[J]. Adv Opt Photonics, 2018, 10: 409-483.

    [17] Horisaki R, Ogura Y, Aino M, et al. Single-shot phase imaging with a coded aperture[J]. Opt Lett, 2014, 39: 6466-6469.

    [18] Fienup J R. Phaseretrieval algorithms: Acomparison[J]. Appl Opt, 1982, 21: 2758-2769.

    [19] Testorf M, Hennelly, B, Ojeda-Castaneda J. Phase-Space Optics[M]. New York: McGraw-Hill Professional Publishing, 2009.

    [20] Teague MR. Deterministic phase retrieval: A Green′s function solution[J]. J Opt Soc Am, 1983, 73: 1434-1441.

    [21] Gabor D. A new microscopic principle[J]. Nature, 1948, 161: 777-778.

    [22] Poon T C. Digital Holography and Three-Dimensional Display: Principles and Applications[M]. London: Springer, 2006.

    [23] Boesl U. Time-of-flight mass spectrometry: Introduction to the basics[J]. Mass Spectrom Rev, 2016, 36: 86-109.

    [24] Geng J. Structured-light 3D surface imaging: A tutorial[J]. Adv Opt Photonics, 2011, 3: 128-160.

    [25] Banks M S, Read J C A, Allison R S, et al. Stereoscopy and the Human Visual System[J]. SMPTE Motion Imaging J, 2012, 121: 24-43.

    [26] Orth A, Crozier K B. Light field moment imaging[J]. Opt Lett, 2013, 38: 2666-2668.

    [27] Levoy M. Light fields and computational imaging[J]. Computer, 2006, 39: 46-55.

    [28] Levoy M, Ng R, Adams A, et al. Light field microscopy[J]. ACM Trans Gr, 2006, 25: 924-934.

    [29] Ng R. Fourier slice photography[J]. ACM Trans Gr, 2005, 24: 735-744.

    [30] Levoy M, Hanrahan P. Light field rendering[C]//Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, 1996: 31-42.

    [31] Ng R, Levoy M, Brédif M, et al. Light field photography with a hand-held plenoptic camera[J]. Comput Sci Tech Rep, 2005, 2: 1-11.

    [32] Xiao X, Javidi B, Martinez-Corral M, et al. Advances in three-dimensional integral imaging: sensing, display, and applications[J]. Appl Opt, 2013, 52: 546-560.

    [33] Wilburn B, Joshi N, Vaish V, et al. High performance imaging using large camera arrays[J]. ACM Trans Gr, 2005, 24: 765-776.

    [34] Lin X, Wu J, Zheng G, et al. Camera array based light field microscopy[J]. Biomed Opt Express, 2015, 6: 3179-3189.

    [35] Georgiev T, Zheng K C, Curless B, et al. Spatio-angular resolution tradeoffs in integral photography[J]. Render Tech,2006: 263-272.

    [36] Veeraraghavan A, Raskar R, Agrawal A, et al. Dappled photography: Mask enhanced cameras for heterodyned light fields and coded aperture refocusing[J]. ACM Trans Gr, 2007, 26: 69.

    [37] Liang C K, Lin T H, Wong B Y, et al. Programmable aperture photography: Multiplexed light field acquisition[J]. ACM Trans Gr, 2008, 27: 55:1-55:10.

    [38] Fuchs M, Kachele M, Rusinkiewicz S. Design and fabrication of faceted mirror arrays for light field capture[J]. Comput Gr Forum, 2013, 32: 246-257.

    [39] Manakov A, Restrepo J F, Klehm O, et al. A reconfigurable camera add-on for high dynamic range, multispectral, polarization, and light-field imaging[J]. ACM Trans Gr, 2013, 32: 1-47.

    [40] Levoy M, Zhang Z, Mcdowall I. Recording and controlling the 4D light field in a microscope using microlens arrays[J]. J Microsc, 2009, 235: 144-162.

    [41] Ng R. Digital light field photography[D]. San Francisco: Standford University, 2006.

    [42] Park J H, Hong K, Lee B. Recent progress in three-dimensional information processing based on integral imaging[J]. Appl Opt, 2009, 48: H77-H94.

    [43] Chen N, Park J H, Kim N. Parameter analysis of integral Fourier hologram and its resolution enhancement[J]. Opt Express, 2010, 18: 2152-2167.

    [44] Chen N, Yeom J, Jung J H, et al. Resolution comparison between integral-imaging-based hologram synthesis methods using rectangular and hexagonal lens arrays[J]. Opt Express,2011, 19: 26917-26927.

    [45] Denisyuk Y N. On the reflection of optical properties of an object in a wave field of light scattered by it[J]. Dokl Akad Nauk, SSSR, 1962, 144: 1275-1278.

    [46] Leith E N, Upatnieks J. Wavefront reconstruction with continuous-tone objects[J]. J Opt Soc Am, 1963, 53: 1377-1381.

    [47] Hariharan P, Oreb B F, Eiju T. Digital phase-shifting interferometry: A simple error-compensating phase calculation algorithm[J]. Appl Opt, 1987, 26: 2504-2506.

    [48] Nugent K A. X-ray non-interferometric phase imaging: A unified picture[J]. J Opt Soc Am A, 2007, 24: 536-547.

    [49] Chen N, Ren Z, Li D, et al. Analysis of the noise in back-projection light field acquisition and its optimization[J]. Appl Opt, 2017, 56: F20-F26.

    [50] Goodman J W. Introduction to Fourier Optics[M]. 3rd ed. New Zealand: Roberts & Company, 2005.

    [51] Park J H, Seo S W, Chen N, et al. Fourier hologram generation from multiple incoherent defocused images[C]// The Three-Dimensional Imaging, Visualization, and Display 2010 and Display Technologies and Applications for Defense, Security, and Avionics IV, 2010: 7690-7698.

    [52] Park J H, Seo S W, Chen N, et al. Hologram synthesis from defocused images captured under incoherent illumination[C]//Proceedings of the Digital Holography and Three-Dimensional Imaging, 2010: 12-14.

    [53] Levin A, Durand F. Linear view synthesis using a dimensionality gap light field prior[C]//Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010: 1831-1838.

    [54] Marwah K, Wetzstein G, Bando Y, et al. Compressive light field photography using overcomplete dictionaries and optimized projections[J]. ACM Trans Gr, 2013, 32, 46:1-46:12.

    [55] Bailey S W, Echevarria J I, BodenheimerB, et al. Fast depth from defocus from focal stacks[J]. Vis Comput, 2014, 31: 1697-1708.

    [56] Kuthirummal S, Nagahara H, Zhou C, et al. Flexible depth of field photography[J]. IEEE Trans Pattern Anal Mach Intell, 2011, 33: 58-71.

    [57] Zeng G L. One-angle fluorescence tomography with in-and-out motion[J]. J Electron Imaging, 2013, 22: 043018.

    [58] McMillan L, Bishop G. Plenoptic modeling: An image-based rendering system[C]//Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, 1995: 39-46.

    [59] Park J H, Lee S K, Jo N Y, et al. Light ray field capture using focal plane sweeping and its optical reconstruction using 3D displays[J]. Opt Express, 2014, 22: 25444-25454.

    [60] Mousnier A, Vural E, Guillemot C. Partial light field tomographic reconstruction from a fixed-camera focal stack[J]. Computer Science, 2015, 22(8): 347-356.

    [61] Wang H, Chen N, Zheng S, et al. Fast and high-resolution light field acquisition using defocus modulation[J]. Appl Opt, 2018, 57: A250-A256.

    [62] Wang H, Chen N, Liu J, et al. Light field imaging based on defocused photographic images[C]//Digital Holography and Three-Dimensional Imaging, 2017: W3A-3.

    [63] Chen N, Ren Z, Lam E Y. High-resolution Fourier hologram synthesis from photographic images through computing the light field[J]. Appl Opt, 2016, 55: 1751-1756.

    [64] Liu J, Xu T, Yue W, et al. Light-field moment microscopy with noise reduction[J]. Opt Express, 2015, 23: 29154-29162.

    [65] Zhang Z, Levoy M. Wigner distributions and how they relate to the light field[C]//Proceedings of the 2009 IEEE International Conference on Computational Photography (ICCP), 2009: 1-10.

    [66] Liu C, Qiu J, Jiang M. Light field reconstruction from projection modeling of focal stack[J]. Opt Express, 2017, 25: 11377-11388.

    [67] Yin X, Wang G, Li W, et al. Iteratively reconstructing 4D light fields from focal stacks[J]. Appl Opt, 2016, 55: 8457-8463.

    [68] Jiang Z, Pan X, Liu C, et al. Light field moment imaging with the ptychographic iterative engine[J]. AIP Adv, 2014, 4: 107108.

    [69] Teague M R. Irradiance moments: their propagation and use for unique retrieval of phase[J]. J Opt Soc Am, 1982, 72: 1199-1209.

    [70] Falaggis K, Kozacki T, Kujawin′ska M, et al. Optimum plane selection criteria for single-beam phase retrieval techniques based on the contrast transfer function[J]. Opt Lett, 2014, 39: 30-33.

    [71] Martinez-Carranza J, Falaggis K, Kozacki T. Optimum measurement criteria for the axial derivative intensity used in transport of intensity-equation-based solvers[J]. Opt Lett, 2014, 39: 182-185.

    [72] Liu C, Qiu J, Zhao S. Iterative reconstruction of scene depth with fidelity based on light field data[J]. Appl Opt, 2017, 56: 3185-3192.

    [73] Zuo C, Chen Q, Qu W, et al. High-speed transport-of-intensity phase microscopy with an electrically tunable lens[J]. Opt Express, 2013, 21: 24060-24075.

    [74] Gerchberg R W, Saxton W O. A practical algorithm for the determination of the phase from image and diffraction plane pictures[J]. J Phys D Appl Phys, 1972, 35: 237-246.

    [75] Gureyev T E, Roberts A, Nugent K A. Partially coherent fields, the transport-of-intensity equation, and phase uniqueness[J]. J Opt Soc Am A, 1995, 12: 1942-1946.

    [76] Paganin D, Nugent K A. Noninterferometric phase imaging with partially coherent light[J]. Phys Rev Lett, 1998, 80: 2586-2589.

    [77] Yang G Z, Dong B Z, Gu B Y, et al. Gerchberg-Saxton and Yang-Gu algorithms for phase retrieval in a nonunitary transform system: A comparison[J]. Appl Opt, 1994, 33: 209-218.

    [78] Fienup J R. Reconstruction of an object from the modulus of its Fourier transform[J]. Opt Lett, 1978, 3: 27-29.

    [79] Cederquist J N, Fienup J R, Wackerman C C, et al. Wave-front phase estimation from Fourier intensity measurements[J]. J Opt Soc Am A, 1989, 6: 1020-1026.

    [80] Devaney A J, Chidlaw R. On the uniqueness question in the problem of phase retrieval from intensity measurements[J]. J Opt Soc Am, 1978, 68: 1352-1354.

    [81] Fienup J R. Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support constraint[J]. J Opt Soc Am A, 1987, 4: 118-123.

    [82] Guo C, Liu S, Sheridan JT. Iterative phase retrieval algorithms I: optimization[J]. Appl Opt, 2015, 54: 4698-4708.

    [83] Rolleston R, George N. Image reconstruction from partial Fresnel zone information[J]. Appl Opt, 1986, 25: 178-183.

    [84] Misell D L. An examination of an iterative method for the solution of the phase problem in optics and electron optics: I. Test calculations[J]. J Phys D Appl Phys, 1973, 6: 2200-2216.

    [85] Fienup J R. Lensless coherent imaging by phase retrieval with an illumination pattern constraint[J]. Opt Express, 2006, 14: 498-508.

    [86] Guo C, Shen C, Li Q, et al. A fast-converging iterative method based on weighted feedback for multi-distance phase retrieval[J]. Sci Rep, 2018, 8: 6436.

    [87] Konijnenberg A, Coene W, Pereira S, et al. Combining ptychographical algorithms with the Hybrid Input-Output (HIO) algorithm[J]. Ultramicroscopy, 2016, 171: 43-54.

    [88] Lu X, Gao W, Zuo J M, et al. Atomic resolution tomography reconstruction of tilt series based on a GPU accelerated hybrid input-output algorithm using polar Fourier transform[J]. Ultramicroscopy, 2015, 149: 64-73.

    [89] Rolleston R, George N. Stationary phase approximations in Fresnel-zone magnitude-only reconstructions[J]. J Opt Soc Am A, 1987, 4: 148-153.

    [90] Dean B H, Bowers C W. Diversity selection for phase-diverse phase retrieval[J]. J Opt Soc Am A, 2003, 20: 1490-1504.

    [91] Mayo S C, Miller P R, Wilkins S W, et al. Quantitative X-ray projection microscopy: phase-contrast and multi-spectral imaging[J]. J Microsc, 2002, 207: 79-96.

    [92] Anand A, Pedrini G, Osten W, et al. Wavefront sensing with random amplitude mask and phase retrieval[J]. Opt Lett,2007, 32: 1584-1586.

    [93] Almoro P F, Hanson S G. Random phase plate for wavefront sensing via phase retrieval and a volume speckle field[J]. Appl Opt, 2008, 47: 2979-2987.

    [94] Zhang F, Chen B, Morrison G R, et al. Phase retrieval by coherent modulation imaging[J]. Nat Commun, 2016, 7:13367.

    [95] Brady G R, Guizar-Sicairos M, Fienup J R. Optical wavefront measurement using phase retrieval with transverse translation diversity[J]. Opt Express, 2009, 17: 624-639.

    [96] Rodenburg J M, Faulkner H M L. A phase retrieval algorithm for shifting illumination[J]. Appl Phys Lett, 2004, 85: 4795-4797.

    [97] Pedrini G, Osten W, Zhang Y. Wave-front reconstruction from a sequence of interferograms recorded at different planes[J]. Opt Lett, 2005, 30: 833-835.

    [98] Chen N, Yeom J, Hong K, et al. Fast converging algorithm for wavefront reconstruction based on a sequence of diffracted intensity images[J]. J Opt Soc Korea, 2014, 18:217-224.

    [99] Bao P, Zhang F, Pedrini G, et al. Phase retrieval using multiple illumination wavelengths[J]. Opt Lett, 2008, 33: 309-311.

    [100] Zhou A, Chen N, Wang H, et al. Analysis of Fourier ptychographic microscopy with half of the captured images[J]. J Opt, 2018, 20: 095701.

    [101] Zhou A, Wang W, Chen N, et al. Fast and robust misalignment correction of Fourier ptychographic microscopy for full field of view reconstruction[J]. Opt Express, 2018, 26: 23661-23674.

    [102] Gao P, Pedrini G, Osten W. Phase retrieval with resolution enhancement by using structured illumination[J]. Opt Lett, 2013, 38: 5204-5207.

    [103] Almoro P, Pedrini G, Osten W. Complete wavefront reconstruction using sequential intensity measurements of a volume speckle field[J]. Appl Opt, 2006, 45: 8596-8605.

    [104] Camacho L, Micó V, Zalevsky Z, et al. Quantitative phase microscopy using defocussing by means of a spatial light modulator[J]. Opt Express, 2010, 18: 6755-6766.

    [105] Agour M, Almoro P F, Falldorf C. Investigation of smooth wave fronts using SLM-based phase retrieval and a phase diffuser[J]. J Eur Opt Soc Rapid Publ, 2012, 7: 12051.

    [106] Almoro P F, Glückstad J, Hanson S G. Single-plane multiple speckle pattern phase retrieval using a deformable mirror[J]. Opt Express, 2010, 18: 19304-19313.

    [107] Roddier F, Roddier C, Roddier N. Curvature sensing: A new wavefront sensing method[C]//Proceedings of the 32nd Annual International Technical Symposium on Optical and Optoelectronic Applied Science and Engineering, 1988.

    [108] Bajt S, Barty A, Nugent K, et al. Quantitative phase-sensitive imaging in a transmission electron microscope[J]. Ultramicroscopy, 2000, 83: 67-73.

    [109] Nugent K A. Coherent methods in the X-ray sciences[J]. Adv Phys, 2010, 59: 1-99.

    [110] Allman B, McMahon P, Nugent K, et al. Phase radiography with neutrons[J]. Nature, 2000, 408: 158-159.

    [111] Streibl N. Phase imaging by the transport equation of intensity[J]. Opt Commun, 1984, 49: 6-10.

    [112] Barty A, Nugent K A, Paganin D, et al. Quantitative optical phase microscopy[J]. Opt Lett, 1998, 23: 817-819.

    [113] Kou S S, Waller L, Barbastathis G, et al. Quantitative phase restoration by direct inversion using the optical transfer function[J]. Opt Lett, 2011, 36: 2671-2673.

    [114] Zuo C, Chen Q, Qu W, et al. Noninterferometric single-shot quantitative phase microscopy[J]. Opt Lett, 2013, 38: 3538-3541.

    [115] Zuo C, Chen Q, Asundi A. Light field moment imaging: Comment[J]. Opt Lett, 2014, 39: 654.

    [116] Woods S C, Greenaway A H. Wave-front sensing by use of a Green′s function solution to the intensity transport equation[J]. J Opt Soc Am A, 2003, 20: 508-512.

    [117] Allen L, Oxley M. Phase retrieval from series of images obtained by defocus variation[J]. Opt Commun, 2001, 199: 65-75.

    [118] Pinhasi S V, Alimi R, Perelmutter L, et al. Topography retrieval using different solutions of the transport intensity equation[J]. J Opt Soc Am A, 2010, 27: 2285-2292.

    [119] Gureyev T E, Roberts A, Nugent K A. Phase retrieval with the transport-of-intensity equation: Matrix solution with use of Zernike polynomials[J]. J Opt Soc Am A, 1995, 12: 1932-1941.

    [120] Gureyev T E, Nugent K A. Phase retrieval with the transport-of-intensity equation. II. Orthogonal series solution for nonuniform illumination[J]. J Opt Soc Am A, 1996, 13:1670-1682.

    [121] Gureyev T E, Nugent K A. Rapid quantitative phase imaging using the transport of intensity equation[J]. Opt Commun,1997, 133: 339-346.

    [122] Zuo C, Chen Q, Asundi A. Boundary-artifact-free phase retrieval with the transport of intensity equation: fast solution with use of discrete cosine transform[J]. Opt Express, 2014, 22: 9220-9244.

    [123] Zuo C, Chen Q, Li H, et al. Boundary-artifact-free phase retrieval with the transport of intensity equation II: Applications to microlens characterization[J]. Opt Express,2014, 22: 18310-18324.

    [124] Huang L, Zuo C, Idir M, et al. Phase retrieval with the transport-of-intensity equation in an arbitrarily shaped aperture by iterative discrete cosine transforms[J]. Opt Lett,2015, 40: 1976-1979.

    [125] Volkov V, Zhu Y, Graef M D. A new symmetrized solution for phase retrieval using the transport of intensity equation[J]. Micron, 2002, 33: 411-416.

    [126] Martinez-Carranza J, Falaggis K, Kozacki T, et al. Effect of imposed boundary conditions on the accuracy of transport of intensity equation-based solvers[C]//Proceedings of the Modeling Aspects in Optical Metrology IV, 2013: 87890N.

    [127] Frank J, Altmeyer S, Wernicke G. Non-interferometric, non-iterative phase retrieval by Green′s functions[J]. J Opt Soc Am A, 2010, 27: 2244-2251.

    [128] Ishizuka A, Mitsuishi K, Ishizuka K. Direct observation of curvature of the wave surface in transmission electron microscope using transport intensity equation[J]. Ultramicroscopy, 2018, 194: 7-14.

    [129] Ishizuka A, Ishizuka K, Mitsuishi K. Boundary-artifact-free observation of magnetic materials using the transport of intensity equation[J]. Microsc Microanal, 2018, 24: 924-925.

    [130] Schmalz J A, Gureyev T E, Paganin D M, et al. Phase retrieval using radiation and matter-wave fields: Validity of Teague's method for solution of the transport-of-intensity equation[J]. Phys Rev A, 2011, 84: 023808.

    [131] Zuo C, Chen Q, Huang L, et al. Phase discrepancy analysis and compensation for fast Fourier transform based solution of the transport of intensity equation[J]. Opt Express, 2014, 22: 17172-17186.

    [132] Ferrari J A, Ayubi G A, Flores J L, et al. Transport of intensity equation: Validity limits of the usually accepted solution[J]. Opt Commun, 2014, 318: 133-136.

    [133] Zuo C, Chen Q, Yu Y, et al. Transport-of-intensity phase imaging using Savitzky-Golay differentiation filter-theory and applications[J]. Opt Express, 2013, 21: 5346-5362.

    [134] Waller L, Tian L, Barbastathis G. Transport of intensity phase-amplitude imaging with higher order intensity derivatives[J]. Opt Express, 2010, 18: 12552-12561.

    [135] Paganin D, Barty A, McMahon P J, et al. Quantitative phase-amplitude microscopy. III. The effects of noise[J]. J Microsc, 2004, 214: 51-61.

    [136] Martin A, Chen F R, Hsieh W K, et al. Spatial incoherence in phase retrieval based on focus variation[J]. Ultramicroscopy, 2006, 106: 914-924.

    [137] Ishizuka K, Allman B. Phase measurement of atomic resolution image using transport of intensity equation[J]. Microscopy, 2005, 54: 191-197.

    [138] Soto M, Acosta E. Improved phase imaging from intensity measurements in multiple planes[J]. Appl Opt, 2007, 46:7978-7981.

    [139] Cong W, Wang G. Higher-order phase shift reconstruction approach: Higher-order phase shift reconstruction approach[J]. Med Phys, 2010, 37: 5238-5242.

    [140] Bie R, Yuan X H, Zhao M,et al. Method for estimating the axial intensity derivative in the TIE with higher order intensity derivatives and noise suppression[J]. Opt Express,2012, 20: 8186-8191.

    [141] Gureyev T, Pogany A, Paganin D, et al. Linear algorithms for phase retrieval in the Fresnel region[J]. Opt Commun, 2004, 231: 53-70.

    [142] Martinez-Carranza J, Falaggis K, Kozacki T. Multi-filter transport of intensity equation solver with equalized noise sensitivity[J]. Opt Express, 2015, 23: 23092-23107.

    [143] Sun J, Zuo C, Chen Q. Iterative optimum frequency combination method for high efficiency phase imaging of absorptive objects based on phase transfer function[J]. Opt Express, 2015, 23: 28031-28049.

    [144] Jenkins M H, Long J M, Gaylord T K. Multifilter phase imaging with partially coherent light[J]. Appl Opt, 2014, 53: D29-D39.

    [145] Zhong J, Claus R A, Dauwels J, et al. Transport of intensity phase imaging by intensity spectrum fitting of exponentially spaced defocus planes[J]. Opt Express, 2014, 22: 10661-10674.

    [146] Xue B, Zheng S, Cui L, et al. Transport of intensity phase imaging from multiple intensities measured in unequally-spaced planes[J]. Opt Express, 2011, 19: 20244-20250.

    [147] Zheng S, Xue B, Xue W, et al. Transport of intensity phase imaging from multiple noisy intensities measured in unequally-spaced planes[J]. Opt Express, 2012, 20: 972-985.

    [148] Savitzky A, Golay M J E. Smoothing and differentiation of data by dimplified least squares procedures[J]. Anal Chem,1964, 36: 1627-1639.

    [149] Gorry P A. General least-squares smoothing and differentiation of nonuniformly spaced data by the convolution method[J]. Anal Chem, 1991, 63: 534-536.

    [150] Luo J, Ying K, He P, et al. Properties of Savitzky-Golay digital differentiators[J]. Dig Signal Process, 2005, 15: 122-136.

    [151] Zuo C, Sun J, Zhang J, et al. Lensless phase microscopy and diffraction tomography with multi-angle and multi-wavelength illuminations using a LED matrix[J]. Opt Express, 2015, 23: 14314-14328.

    [152] Waller L, Kou S S, Sheppard C J R, et al. Phase from chromatic aberrations[J]. Opt Express, 2010, 18: 22817-22825.

    [153] Nguyen T, Nehmetallah G, Tran D, et al. Fully automated, high speed, tomographic phase object reconstruction using the transport of intensity equation in transmission and reflection configurations[J]. Appl Opt, 2015, 54: 10443-10453.

    [154] Almoro P F, Waller L, Agour M, et al. Enhanced deterministic phase retrieval using a partially developed speckle field[J]. Opt Lett, 2012, 37: 2088-2090.

    [155] Gorthi S S, Schonbrun E. Phase imaging flow cytometry using a focus-stack collecting microscope[J]. Opt Lett, 2012, 37: 707-709.

    [156] Zuo C, Sun J, Li J, et al. High-resolution transport-of-intensity quantitative phase microscopy with annular illumination[J]. Sci Rep, 2017, 7: 7654.

    [157] Li J, Chen Q, Zhang J, et al. Efficient quantitative phase microscopy using programmable annular LED illumination[J]. Biomed Opt Express, 2017, 8: 4687-4705.

    [158] Chakraborty T, Petruccelli J C. Source diversity for transport of intensity phase imaging[J]. Opt Express, 2017, 25: 9122-9137.

    [159] Chakraborty T, Petruccelli J C. Optical convolution for quantitative phase retrieval using the transport of intensity equation[J]. Appl Opt, 2018, 57: A134-A141.

    [160] Shaked N T, Katz B, Rosen J. Review of three-dimensional holographic imaging by multiple-viewpoint projection-based methods[J]. Appl Opt, 2009, 48: H120-H136.

    [161] McCrickerd J T, George N. Holographic stereogram from sequential component photographs[J]. Appl Phys Lett, 1968, 12: 10-12.

    [162] Benton S A. Survey of holographic stereograms[C]//Proceedings of the Processing and Display of Three-Dimensional Data, 1983.

    [163] Tian L, Waller L. 3D intensity and phase imaging from light field measurements in an LED array microscope[J]. Optica, 2015, 2: 104-111.

    [164] Adelson E H, Bergen J R. The Plenoptic Function and the Elements of Early Vision[M]. Cambridge: MIT Press, 1991: 3-20.

    [165] Gureyev T E, Paganin D M, Stevenson A W, et al. Generalized Eikonal of partially coherent beams and its use in quantitative imaging[J]. Phys Rev Lett, 2004, 93: 068103.

    [166] Bastiaans M J. Application of the Wigner distribution function to partially coherent light[J]. J Opt Soc Am A, 1986, 3: 1227-1238.

    [167] Walther A. Radiometry and coherence[J]. J Opt Soc Am,1968, 58: 1256-1259.

    [168] Zuo C, Chen Q, Tian L, et al. Transport of intensity phase retrieval and computational imaging for partially coherent fields: The phase space perspective[J]. Opt Lasers Eng, 2015, 71: 20-32.

    [169] Boashash B. Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals[J]. Proc IEEE, 1992, 80: 520-538.

    [170] Bastiaans M J. The Wigner distribution function applied to optical signals and systems[J]. Opt Commun, 1978, 25: 26-30.

    [171] Petruccelli J C, Tian L, Barbastathis G. The transport of intensity equation for optical path length recovery using partially coherent illumination[J]. Opt Express, 2013, 21:14430-14441.

    [172] Dragoman D. Phase-space interferences as the source of negative values of the Wigner distribution function[J]. J Opt Soc Am A, 2000, 17: 2481-2485.

    [173] Bastiaans M J. Uncertainty principle for partially coherent light[J]. J Opt Soc Am, 1983, 73: 251-255.

    [174] Paganin D, Gureyev T E, Mayo S C, et al. X-ray omni microscopy[J]. J Microsc, 2004, 214: 315-327.

    [175] Li J, Chen Q, Sun J, et al. Multimodal computational microscopy based on transport of intensity equation[J]. J Biomed Opt, 2016, 21: 126003.

    [176] Friberg A T. On the existence of a radiance function for finite planar sources of arbitrary states of coherence[J]. J Opt Soc Am, 1979, 69: 192-198.

    [177] Oh S B, Kashyap S, Garg R, et al. Rendering wave effects with augmented light field[J]. Comput Gr Forum, 2010, 29: 507-516.

    [178] Schwiegerling J.Wavefront Sensing: Shack-Hartmann sensing[J]. J Refract Surg, 2001, 17: 573-577.

    [179] Waller L. Phase imaging with partially coherent light[C]//Proceedings of the Three-dimensional and multidimensional microscopy: Image acquisition and processing XX, 2013.

    [180] Iaconis C, Walmsley I A. Direct measurement of the two-point field correlation function[J]. Opt Lett, 1996, 21: 1783-1785.

    [181] Marks D L, Stack R A, Brady D J. Three-dimensional coherence imaging in the Fresnel domain[J]. Appl Opt, 1999, 38: 1332-1342.

    [182] Nugent K A. Wave field determination using three-dimensional intensity information[J]. Phys Rev Lett, 1992, 68: 2261-2264.

    [183] Raymer M G, Beck M, McAlister D. Complex wave-field reconstruction using phase-space tomography[J]. Phys Rev Lett, 1994, 72: 1137-1140.

    [184] Rydberg C, Bengtsson J. Numerical algorithm for the retrieval of spatial coherence properties of partially coherent beams from transverse intensity measurements[J]. Opt Express, 2007, 15: 13613-13623.

    [185] Zhang Z, Chen Z, Rehman S, et al. Factored form descent: A practical algorithm for coherence retrieval[J]. Opt Express, 2013, 21: 5759.

    [186] Tian L, Zhang Z, Petruccelli J C, et al. Wigner function measurement using a lenslet array[J]. Opt Express, 2013, 21: 10511-10525.

    [187] Waller L, Situ G, Fleischer J W. Phase-space measurement and coherence synthesis of optical beams[J]. Nat Photonics,2012, 6: 474-479.

    [188] Allen L J, Faulkner H M L, Nugent K A, et al. Phase retrieval from images in the presence of first-order vortices[J]. Phys Rev E, 2001, 63: 037602.

    Chen Ni, Zuo Chao, Byoungho Lee. 3D imaging based on depth measurement[J]. Infrared and Laser Engineering, 2019, 48(6): 603013
    Download Citation