• Journal of Innovative Optical Health Sciences
  • Vol. 16, Issue 1, 2230011 (2023)
Jing Wang1、2、*, Zhen Zhang1、2, Hongyu Shen1、2, Qi Wu1、2, and Min Gu1、2、**
Author Affiliations
  • 1Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
  • 2Centre for Artificial-Intelligence Nanophotonics, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
  • show less
    DOI: 10.1142/S1793545822300117 Cite this Article
    Jing Wang, Zhen Zhang, Hongyu Shen, Qi Wu, Min Gu. Application and development of fluorescence probes in MINFLUX nanoscopy (invited paper)[J]. Journal of Innovative Optical Health Sciences, 2023, 16(1): 2230011 Copy Citation Text show less
    References

    [1] E. Abbe. Beitrage zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch. Mikrosk. Anat, 9, 413-468(1873).

    [2] S. W. Hell, J. Wichmann. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Opt. Lett., 19, 780-782(1994).

    [3] T. A. Klar, S. Jakobs, M. Dyba et al. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl. Acad. Sci. USA, 97, 8206-8210(2000).

    [4] M. J. Rust, M. Bates, X. Zhuang. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods, 3, 793-795(2006).

    [5] E. Betzig, G. H. Patterson, R. Sougrat et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 1642-1645(2006).

    [6] S. T. Hess, T. P. K. Girirajan, M. D. Mason. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J., 91, 4258-4272(2006).

    [7] K. Xu, G. Zhong, X. Zhuang. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science, 339, 452-456(2013).

    [8] E. D’Este, K. Dirk, V. Caroline et al. Subcortical cytoskeleton periodicity throughout the nervous system. Sci. Rep., 6, 22741(2016).

    [9] S. J. Sahl, S. W. Hell, S. Jakobs. Fluorescence nanoscopy in cell biology. Nat. Rev. Mol. Cell. Biol., 18, 685-701(2017).

    [10] F. Balzarotti, Y. Eilers, K. C. Gwosch et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science, 355, 606-612(2017).

    [11] K. C. Gwosch, J. K. Pape, F. Balzarotti et al. Minflux nanoscopy delivers 3D multicolor nanometer resolution in cells. Nat. Methods, 17, 217-224(2020).

    [12] R. Schmidt, T. Weihs, C. A. Wurm et al. MINFLUX nanometer-scale 3D imaging and microsecond-range tracking on a common fluorescence microscope. Nat. Commun., 12, 1478(2021).

    [13] J. K. Pape, T. Stephan, F. Balzarotti et al. Multicolor 3D MINFLUX nanoscopy of mitochondrial MICOS proteins. Proc. Natl. A Sci., 117, 20607-20614(2020).

    [14] S. W. Hell. Far-field optical nanoscopy. Science, 316, 1153-1158(2007).

    [15] S. W. Hell. Nobel lecture: Nanoscopy with freely propagating light. Rev. Mod. Phys., 87, 1169-1181(2015).

    [16] D. T. Burnette, P. Sengupta, Y. Dai et al. Bleaching/blinking assisted localization microscopy for superresolution imaging using standard fluorescent molecules. Proc. Natl. Acad. Sci. USA, 108, 21081-21086(2011).

    [17] S. J. Holden, S. Uphoff, A. N. Kapanidis. DAOSTORM: An algorithm for high-density super-resolution microscopy. Nat. Methods, 8, 279-280(2011).

    [18] B. Huang, W. Wang, M. Bates et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science, 319, 810-813(2008).

    [19] M. Bates, B. Huang, G. T. Dempsey et al. Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science, 317, 1749-1753(2007).

    [22] L. A. Masullo, F. Steiner, J. Zhringer et al. Pulsed interleaved MINFLUX. Nano Lett., 21, 840-846(2020).

    [23] J. C. Thiele, D. A. Helmerich, N. Oleksiievets et al. Confocal fluorescence-lifetime single-molecule localization microscopy. ACS Nano, 14, 14190-14200(2020).

    [24] M. Castello, G. Tortarolo, M. Buttafava et al. A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM. Nat. Methods, 16, 175-178(2019).

    [25] K. Zhao, X. Xu, W. Ren et al. Two-photon MINFLUX with doubled localization precision. eLight, 2, 5(2022).

    [26] M. Weber, M. Leutenegger, S. Stoldt et al. MINSTED fluorescence localization and nanoscopy. Nat. Photon., 15, 361-366(2021).

    [29] F. G. Ttfert, C. Wurm, V. Mueller et al. Coaligned dual-channel STED nanoscopy and molecular diffusion analysis at 20nm resolution. Biophys. J., 105, L01-L03(2013).

    [30] T. Stephan, C. Brüser, M. Deckers et al. MICOS assembly controls mitochondrial inner membrane remodeling and crista junction redistribution to mediate cristae formation. Embo. J., 39, e104105(2020).

    [31] A. Lampe, V. Haucke, S. J. Sigrist et al. Multi-colour direct STORM with red emitting carbocyanines. Biol. Cell, 104, 229-237(2012).

    [32] H. Takakura, Y. Zhang, R. S. Erdmann et al. Long time-lapse nanoscopy with spontaneously blinking membrane probes. Nat. Biotechnol., 35, 773-780(2017).

    [33] P. J. Macdolnald, S. Gayda, R. A. Haack et al. Rhodamine-Derived Fluorescent Dye with Inherent Blinking Behavior for Super-Resolution Imaging. Anal. Chem., 90, 9165(2018).

    [34] S. Uno, M. Kamiya, T. Yoshihara, K. Sugawara et al. A spontaneously blinking fluorophore based on intramolecular spirocyclization for live-cell super-resolution imaging. Nat. Chem., 6, 681-689(2014).

    [35] S. Uno, M. Kamiya, A. Morozumi et al. A green-light-emitting, spontaneously blinking fluorophore based on intramolecular spirocyclization for dual-colour super-resolution imaging. Chem. Sci., 54, 102(2018).

    [37] Richard Lincoln, L. Bossi Mariano, Michael Remmel et al. A general design of caging-group-free photoactivatable fluorophores for live-cell nanoscopy. Nat. Chem.(2022). https://doi.org/10.1038/s41557-022-00995-0

    [38] M. Nirmal, B. O. Dabbousi, M. G. Bawendi et al. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature, 383, 802-804(1996).

    [39] C. Galland, Y. Ghosh, A. Steinbruck et al. Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots. Nature, 479, 203-207(2011).

    [40] B. Li, X. Y. Miao. Photoluminescence blinking properties of single CsPbBr3 perovskite quantum dots. Acta Phys. Sin., 70, 207802(2021).

    [41] H. He, X. Liu, S. Li et al. High-density super-resolution localization imaging with blinking carbon dots. Anal. Chem., 89, 11831-11838(2017).

    [42] A. Szymborska, A. D. Marco, N. Daigle et al. Nuclear pore scaffold structure analyzed by superresolution microscopy and particle averaging. Science, 341, 655-658(2013).

    [43] K. Schücker, T. Holm, C. Franke et al. Elucidation of synaptonemal complex organization by superresolution imaging with isotropic resolution. Proc. Natl. Acad. Sci. USA, 112, 2029-2033(2015).

    [44] J. M. Fritschy. Is my antibody-staining specific? How to deal with pitfalls of immunohistochemistry. Eur. J. Neurosci., 28, 2365-2370(2008).

    [45] D. M. Chudakov, M. V. Matz, S. Lukyanov et al. Fluorescent proteins and their applications in imaging living cells and tissues. Physiol. Rev., 90, 1103-63(2010).

    [46] S. Wang, J. R. Moffitt, G. T. Dempsey et al. Characterization and development of photoactivatable fluorescent proteins for single-molecule-based superresolution imaging. Proc. Natl. Acad. Sci. USA, 111, 8452-8457(2014).

    [47] J. Q. Wu, T. D. Pollard. Counting cytokinesis proteins globally and locally in fission yeast. Science, 310, 310-314(2005).

    [48] A. Keppler, S. Gendreizig, T. Gronemeyer et al. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol., 21, 86-89(2003).

    [49] G. V. Los, L. P. Encell, M. G. Mcdougall et al. HaloTag: A novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol., 3, 373-382(2008).

    [50] S. J. Sahl, S. W. Hell, S. Jakobs et al. Fluorescence nanoscopy in cell biology. Nat. Rev. Mol. Cell. Biol., 18, 685-701(2017).

    [51] H. Li, J. C. Vaughan. Switchable fluorophores for single-molecule localization microscopy. Chem. Rev., 118, 9412-9454(2018).

    [52] L. Arrico, L. D. Bari, F. Zinna. Quantifying the overall efficiency of circularly polarized emitters. Chem. Eur. J., 27, 2920(2021).

    Jing Wang, Zhen Zhang, Hongyu Shen, Qi Wu, Min Gu. Application and development of fluorescence probes in MINFLUX nanoscopy (invited paper)[J]. Journal of Innovative Optical Health Sciences, 2023, 16(1): 2230011
    Download Citation