[1] J. L. Shay, J. H. Wernick. Ternary Chalcopyrite Structure Semiconductors(1976).
[2] X. Zhao, S. F. Zhu, B. J. Zhao, B. J. Chen, Z. Y. He, R. L. Wang, H. G. Yang, Y. Q. Sun, J. Cheng. Growth and characterization of ZnGeP2 single crystals by the modified Bridgman method. J. Cryst. Growth., 311, 190(2008).
[3] L. Wang, T. L. Xing, S. W. Hu, X. Y. Wu, H. X. Wu, J. Y. Wang, H. H. Jiang. Mid-infrared ZGP-OPO with a high optical-to-optical conversion efficiency of 75.7%. Opt. Express, 25, 3373(2017).
[4] D. H. Yang, B. J. Zhao, B. J. Chen, S. F. Zhu, Z. Y. He, W. Huang, Z. R. Zhao, M. D. Liu. Impurity phases analysis of ZnGeP2 single crystal grown by Bridgman method. J. Alloy. Compd., 709, 125(2017).
[5] D. N. Nikogosyan. Nonlinear Optical Crystals: A Complete Survey(2006).
[6] V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan. Handbook of Nonlinear Optical Crystals(2013).
[7] P. B. Phua, K. S. Lai, R. F. Wu, T. C. Chong. High-efficiency mid-infrared ZnGeP2 optical parametric oscillator in a multimode-pumped tandem optical parametric oscillator. Appl. Opt., 38, 563(1999).
[8] C. P. Qian, X. M. Duan, B. Q. Yao, Y. J. Shen, Y. Zhang, B. R. Zhao, J. H. Yuan, T. Y. Dai, Y. L. Ju, Y. Z. Wang. 11.4 W long-wave infrared source based on ZnGeP2 optical parametric amplifier. Opt. Express, 26, 30195(2018).
[9] U. Chatterjee. Development of coherent tunable source in 2–16 µm region using nonlinear frequency mixing processes. Pramana-J. Phys., 82, 29(2014).
[10] L. V. Koval’chuk, A. N. Grezev, V. G. Niz’ev, V. P. Yakunin, V. S. Mezhevov, D. A. Goryachkin, V. V. Sergeev, A. G. Kalintsev. Repetitively pulsed TEA CO2 laser and its application for second harmonic generation in ZnGeP2 crystal. Quantum. Electron., 45, 884(2015).
[11] S. D. Setzler, P. G. Schunemann, T. M. Pollak, M. C. Ohmer, J. T. Goldstein, F. K. Hopkins, K. T. Stevens, L. E. Halliburton, N. C. Giles. Characterization of defect-related optical absorption in ZnGeP2. J. Appl. Phys., 86, 6677(1999).
[12] S.-H. Nam, V. Fedorov, S. Mirov, K.-H. Hong. Octave-spanning mid-infrared femtosecond OPA in a ZnGeP2 pumped by a 2.4 µm Cr:ZnSe chirped-pulse amplifier. Opt. Express, 28, 32403(2020).
[13] T. T. Yu, S. P. Wang, X. Zhang, C. N. Li, J. Qiao, N. Jia, B. Han, S.-Q. Xia, X. T. Tao. MnSiP2: a new Mid-IR ternary phosphide with strong SHG effect and ultrabroad transparency range. Chem. Mater., 31, 2010(2019).
[14] S. D. Setzler, N. C. Giles, L. E. Halliburton, P. G. Schunemann, T. M. Pollak. Electron paramagnetic resonance of a cation antisite defect in ZnGeP2. Appl. Phys. Lett., 74, 1218(1999).
[15] D. M. Hofmann, N. G. Romanov, W. Gehlhoff, D. Pfisterer, B. K. Meyer, D. Azamat, A. Hoffmann. Optically detected magnetic resonance experiments on native defects in ZnGeP2. Physica B Condens. Matter, 340, 978(2003).
[16] G. D. Zhang, X. T. Tao, S. P. Wang, G. D. Liu, Q. Shi, M. H. Jiang. Growth and thermal annealing effect on infrared transmittance of ZnGeP2 single crystal. J. Cryst. Growth., 318, 717(2011).
[17] N. C. Giles, L. H. Bai, M. M. Chirila, N. Y. Garces, K. T. Stevens, P. G. Schunemann, S. D. Setzler, T. M. Pollak. Infrared absorption bands associated with native defects in ZnGeP2. J. Appl. Phys., 93, 8975(2003).
[18] M. D. Feit, A. M. Rubenchik, D. R. Faux, R. A. Riddle, A. Shapiro, D. C. Eder, B. M. Penetrante, D. Milam, F. Y. Genin, M. R. Kozlowski. Modeling of laser damage initiated by surface contamination. Proc. SPIE, 2966, 417(1996).
[19] M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, F. Krausz. Femtosecond optical breakdown in dielectrics. Phys. Rev. Lett., 80, 4076(1998).
[20] H. J. Liu, L. Jiao, F. Yang, Y. Cai, X. X. Wu, W. K. Ho, C. L. Gao, J. F. Jia, N. Wang, H. Fan, W. Yao, M. H. Xie. Dense network of one-dimensional midgap metallic modes in monolayer MoSe2 and their spatial undulations. Phys. Rev. Lett., 113, 066105(2014).
[21] L. E. Halliburton, G. J. Edwards, M. P. Scripsick, M. H. Rakowsky, P. G. Schunemann, T. M. Pollak. Electron-nuclear double resonance of the zinc vacancy in ZnGeP2. Appl. Phys. Lett., 66, 2670(1995).
[22] Q. Fan, S. F. Zhu, B. J. Zhao, B. J. Chen, Z. Y. He, J. Cheng, T. Xu. Influence of annealing on optical and electrical properties of ZnGeP2 single crystals. J. Cryst. Growth., 318, 725(2011).
[23] M. Moldovan, N. C. Giles. Broad-band photoluminescence from ZnGeP2. J. Appl. Phys., 87, 7310(2000).
[24] M. Moldovan, K. T. Stevens, L. E. Halliburton, P. G. Schunemann, T. M. Pollak, S. D. Setzler, N. C. Giles. Photoluminescence and EPR of phosphorus vacancies in ZnGeP2. Mat. Res. Soc. Symp. Proc., 607, 445(1999).
[25] Q. L. Cui, Z. Y. Luo, Q. R. Cui, W. Zhu, H. W. Shou, C. Q. Wu, Z. F. Liu, Y. X. Lin, P. J. Zhang, S. Q. Wei, H. X. Yang, S. M. Chen, A. L. Pan, L. Song. Robust and high photoluminescence in WS2 monolayer through in situ defect engineering. Adv. Funct. Mater., 31, 2105339(2021).
[26] J. B. Peng, D. C. Yang, C. X. Ren, Y. Jiang, X. L. Zhu, F. L. Jing, H. L. Qiu, H. J. Liu, Z. G. Hu. Electronic properties and carrier dynamics at the alloy interfaces of WS2xSe2−2x spiral nanosheets. Adv. Mater., 34, 2107738(2022).
[27] Y. Janssen, D. Santhanagopalan, D. Qian, M. F. Chi, X. P. Wang, C. Hoffmann, Y. S. Meng, P. G. Khalifah. Reciprocal salt flux growth of LiFePO4 single crystals with controlled defect concentrations. Chem. Mater., 25, 4574(2013).
[28] C. Callaert, M. Bercx, D. Lamoen, J. Hadermann. Interstitial defects in the van der Waals gap of Bi2Se3. Acta. Crystallog. B, 75, 717(2019).
[29] S. K. Tripathy, V. Kumar. Electronic, elastic and optical properties of ZnGeP2 semiconductor under hydrostatic pressures. Mat. Sci. Eng. B, 182, 52(2014).
[30] G. J. He, I. Rozahun, Z. Li, J. Zhang, M.-H. Lee. Size effect and identified superior functional units enhancing second harmonic generation responses on the II-IV-V2 type nonlinear optical crystals. Chem. Phys., 518, 101(2019).
[31] Z. T. Lei, C. Q. Zhu, C. Xu, B. Q. Yao, C. H. Yang. Growth of crack-free ZnGeP2 large single crystals for high-power mid-infrared OPO applications. J. Cryst. Growth., 389, 23(2014).
[32] S. Shirakata. Raman scattering and its hydrostatic pressure dependence in ZnGeP2 crystal. J. Appl. Phys., 85, 3294(1999).
[33] G. D. Zhang, L. Wei, L. Z. Zhang, X. P. Wang, B. Liu, X. Zhao, X. T. Tao. Growth and polarized Raman spectroscopy investigations of single crystal CdSiP2: experimental measurements and ab initio calculations. J. Cryst. Growth., 473, 28(2017).
[34] C. I. Rablau, N. C. Giles. Sharp-line luminescence and absorption in ZnGeP2. J. Appl. Phys., 90, 3314(2001).
[35] F. F. Wang, L. Jiang, J. Y. Sun, C. J. Pan, Y. L. Lian, J. X. Sun, K. Wang, Q. S. Wang, J. X. Wang, Y. F. Lu. One-step fabrication method of GaN films for internal quantum efficiency enhancement and their ultrafast mechanism investigation. ACS Appl. Mater. Interfaces, 13, 7688(2021).
[36] K. P. O’Donnell, X. Chen. Temperature dependence of semiconductor band gaps. Appl. Phys. Lett., 58, 2924(1991).
[37] W. Gehlhoff, R. N. Pereira, D. Azamat, A. Hoffmann, N. Dietz. Energy levels of native defects in zinc germanium diphosphide. Physica B Condens. Matter, 308, 1015(2001).
[38] S. D. Setzler, L. E. Halliburton, N. C. Giles, P. G. Schunemann, T. M. Pollak. Electron paramagnetic resonance and photoluminescence studies of point defects in zinc germanium phosphide (ZnGeP2). Mat. Res. Soc. Symp. Proc., 450, 327(1996).
[39] P. Z. Wang, D. W. He, Y. S. Wang, X. X. Zhang, J. Q. He, H. Zhao. Fast exciton diffusion in monolayer PtSe2. Laser. Photonics. Rev., 16, 2100594(2022).
[40] N. Kumar, J. Q. He, D. W. He, Y. S. Wang, H. Zhao. Charge carrier dynamics in bulk MoS2 crystal studied by transient absorption microscopy. J. Appl. Phys., 113, 133702(2013).
[41] X. A. Dou, X. Q. Sun, H. Li, X. D. Chen. The study of transient bleaching effect of indirect bandgap semiconductors induced by femtosecond laser. Optik, 126, 3267(2015).
[42] E. Rogowicz, J. Kopaczek, J. Kutrowska-Girzycka, M. Myronov, R. Kudrawiec, M. Syperek. Carrier dynamics in thin germanium–tin epilayers. ACS Appl. Electron. Mater., 3, 344(2021).
[43] S. W. Yin, Y. P. Han, T. W. Yan, Q. Fu, T. T. Xu, W. Z. Wu. Ultrafast carrier dynamics in SnSe thin film studied by femtosecond transient absorption technique. Physica B Condens. Matter, 622, 413347(2021).