• Photonics Research
  • Vol. 5, Issue 6, 588 (2017)
Nan Chi*, Mengjie Zhang, Jianyang Shi, and Yiheng Zhao
Author Affiliations
  • Department of Communication Science and Engineering, and Key Laboratory for Information Science of Electromagnetic Waves (MoE), Fudan University, Shanghai 200433, China
  • show less
    DOI: 10.1364/PRJ.5.000588 Cite this Article Set citation alerts
    Nan Chi, Mengjie Zhang, Jianyang Shi, Yiheng Zhao. Spectrally efficient multi-band visible light communication system based on Nyquist PAM-8 modulation[J]. Photonics Research, 2017, 5(6): 588 Copy Citation Text show less
    References

    [1] D. O’Brien, H. L. Minh, L. Zeng, G. Faulkner, K. Lee, D. Jung, Y. Oh, E. T. Won. Indoor visible light communications: challenges and prospects. Proc. SPIE, 7091, 709106(2008).

    [2] N. Chi, H. Haas, M. Kavehrad, T. D. Little, X. L. Huang. Visible light communications: demand factors, benefits, and opportunities. IEEE Wireless Commun., 22, 5-7(2015).

    [3] J. Zhang, J. Wang, M. Xu, F. Lu, L. Cheng, J. Yu, G.-K. Chang. Full-duplex asynchronous quasi-gapless carrier-aggregation using filter-bank multi-carrier in MMW radio-over-fiber heterogeneous mobile access networks. Optical Fiber Communication Conference, Tu-2B.2(2016).

    [4] H. Elgala, R. Mesleh, H. Haas. Indoor broadcasting via white LEDs and OFDM. IEEE Trans. Consum. Electron., 55, 1127-1134(2009).

    [5] F. Wu, C. Lin, C. Wei, C. Chen, Z. Chen, H. Huang. 3.22-Gb/s WDM visible light communication of a single RGB LED employing carrier-less amplitude and phase modulation. Optical Fiber Communication Conference, OTh1G.4(2013).

    [6] G. Stepniak, L. Maksymiuk, J. Siuzdak. 1.1  Gbit/s white lighting LED-based visible light link with pulse amplitude modulation and volterra DFE equalization. Microw. Opt. Technol. Lett., 57, 1620-1622(2015).

    [7] L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, C. Lu. Experimental demonstration of 10  Gb/s multi-level carrier-less amplitude and phase modulation for short range optical communication systems. Opt. Express, 21, 6459-6465(2013).

    [8] G. Stepniak, L. Maksymiuk, J. Siuzdak. Experimental comparison of PAM, CAP, and DMT modulations in phosphorescent white LED transmission link. IEEE Photon. J., 7, 1-8(2015).

    [9] L. F. Suhr, J. V. Olmos, I. T. Monroy. 10-Gbps duobinary-4-PAM for high-performance access networks. Asia Communications and Photonics Conference 2014, ATh3A-161(2014).

    [10] M. Zhang, M. Shi, F. Wang, J. Zhao, Y. Zhou, Z. Wang, N. Chi. 4.05-Gb/s RGB LED-based VLC system utilizing PS-Manchester coded Nyquist PAM-8 modulation and hybrid time-frequency domain equalization. Optical Fiber Communication Conference, W2A.42(2017).

    [11] M. Xu, J. Zhang, F. Lu, J. Wang, L. Cheng, M. I. Khalil, D. Guidotti, G. Chang. Orthogonal multiband CAP modulation based on offset-QAM and advanced filter design in spectral efficient MMW RoF systems. J. Lightwave Technol., 35, 997-1005(2017).

    [12] P. A. Haigh, S. T. Le, S. Zvanovec, Z. Ghassemlooy, P. Luo, T. Xu, P. Chvojka, T. Kanesan, E. Giacoumidis, P. Canyelles-Pericas, H. L. Mihn, W. Popoola, S. Rajbandari, I. Papakonstantinou, I. Darwazeh. Multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications systems. IEEE Wireless Commun., 22, 46-53(2015).

    [13] P. A. Haigh, A. Burton, K. Werfli, H. L. Minh, E. Bentley, P. Chvojka, W. O. Popoola, I. Papakonstantinous, S. Zvanovec. A multi-CAP visible-light communications system with 4.85-b/s/Hz spectral efficiency. IEEE J. Sel. Areas Commun., 33, 1771-1779(2015).

    [14] C. H. Yeh, H. Y. Chen, C. W. Chow, Y. L. Liu. Utilization of multi-band OFDM modulation to increase traffic rate of phosphor-LED wireless VLC. Opt. Express, 23, 1133-1138(2015).

    [15] Y. Wang, L. Tao, Y. Wang, N. Chi. High speed WDM VLC system based on multi-band CAP64 with weighted pre-equalization and modified CMMA based post-equalization. IEEE Commun. Lett., 18, 1719-1722(2014).

    [16] M. Zhang, Y. Wang, Z. Wang, J. Zhao, N. Chi. A novel scalar MCMMA blind equalization utilized in 8-PAM LED based visible light communication system. IEEE International Conference on Communications Workshops (ICC), 321-325(2016).

    [17] A. Leven, F. Vacondio, L. Schmalen, S. Brink, W. Idler. Estimation of soft FEC performance in optical transmission experiments. IEEE Photon. Technol. Lett., 23, 1547-1549(2011).

    [18] J. Zhang, J. Yu, F. Li, N. Chi, Z. Dong, X. Li. 11 × 5 × 9.3  Gb/s WDM-CAP-PON based on optical single-side band multi-level multi-band carrier-less amplitude and phase modulation with direct detection. Opt. Express, 21, 18842-18848(2013).

    [19] X. Huang, J. Shi, J. Li, Y. Wang, Y. Wang, N. Chi. 750Mbit/s visible light communications employing 64QAM-OFDM based on amplitude equalization circuit. Optical Fiber Communication Conference, Tu2G.1(2015).

    [20] Y. Wang, X. Huang, L. Tao, J. Shi, N. Chi. 4.5-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization. Opt. Express, 23, 13626-13633(2015).

    [21] N. Chi, M. Zhang, Y. Zhou, J. Zhao. 3.375-Gb/s RGB-LED based WDM visible light communication system employing PAM-8 modulation with phase shifted Manchester coding. Opt. Express, 24, 21663-21673(2016).

    Nan Chi, Mengjie Zhang, Jianyang Shi, Yiheng Zhao. Spectrally efficient multi-band visible light communication system based on Nyquist PAM-8 modulation[J]. Photonics Research, 2017, 5(6): 588
    Download Citation