• Chinese Optics Letters
  • Vol. 19, Issue 7, 071701 (2021)
Lijun Deng1, Qi Chen1, Yang Bai1、2, Guodong Liu2, Lüming Zeng1、2、*, and Xuanrong Ji1
Author Affiliations
  • 1State Key Laboratory of Precision Electronics Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
  • 2Key Laboratory of Optic-Electronics and Communication, Jiangxi Science and Technology Normal University, Nanchang 330038, China
  • show less
    DOI: 10.3788/COL202119.071701 Cite this Article Set citation alerts
    Lijun Deng, Qi Chen, Yang Bai, Guodong Liu, Lüming Zeng, Xuanrong Ji. Compact long-working-distance laser-diode-based photoacoustic microscopy with a reflective objective[J]. Chinese Optics Letters, 2021, 19(7): 071701 Copy Citation Text show less
    References

    [1] J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, L. H. V. Wang. High-speed label-free functional photoacoustic microscopy of mouse brain in action. Nat. Methods, 12, 407(2015).

    [2] P. F. Hai, T. Imai, S. Xu, R. Y. Zhang, R. L. Aft, J. Zou, L. H. V. Wang. High-throughput, label-free, single-cell photoacoustic microscopy of intratumoral metabolic heterogeneity. Nat. Biomed. Eng., 3, 381(2019).

    [3] J. Kim, J. Y. Kim, S. Jeon, J. W. Baik, S.H. Cho, C. Kim. Super-resolution localization photoacoustic microscopy using intrinsic red blood cells as contrast absorbers. Light: Sci. Appl., 8, 103(2019).

    [4] W. Y. Zhang, H. G. Ma, Z. W. Cheng, Z. Y. Wang, K. D. Xiong, S. H. Yang. High-speed dual-view photoacoustic imaging pen. Opt. Lett., 45, 1599(2020).

    [5] J. B. Tang, X. J. Dai, H. B. Jiang. Wearable scanning photoacoustic brain imaging in behaving rats. J. Biophoton., 9, 570(2016).

    [6] T. Jin, H. Guo, H. B. Jiang, B. W. Ke, L. Xi. Portable optical resolution photoacoustic microscopy (pORPAM) for human oral imaging. Opt. Lett., 42, 4434(2017).

    [7] Q. Chen, H. Guo, T. Jin, W. Z. Qi, H. K. Xie, L. Xi. Ultracompact high-resolution photoacoustic microscopy. Opt. Lett., 43, 1615(2018).

    [8] P. Hajireza, W. Shi, R. J. Zemp. Real-time handheld optical-resolution photoacoustic microscopy. Opt. Express, 19, 20097(2011).

    [9] F. Duan, H. Ma, J. Zhang, S. Li, H. Li, Z. Wu, F. Hong, L. Zeng, L. Nie. Optical-resolution photoacoustic microscopy continually monitors macrophages activities of acute inflammation in vivo. Chin. Opt. Lett., 18, 121701(2020).

    [10] X. Wang, K. Xiong, X. Jin, S. Yang. Tomography-assisted Doppler photoacoustic microscopy: proof of concept. Chin. Opt. Lett., 18, 101702(2020).

    [11] L. Zeng, G. Liu, D. Yang, X. Ji. 3D-visual laser-diode-based photoacoustic imaging. Opt. Express, 20, 1237(2012).

    [12] H. T. Zhong, J. Y. Zhang, T. Y. Duan, H. R. Lan, M. Zhou, F. Gao. Enabling both time-domain and frequency-domain photoacoustic imaging by a fingertip laser diode system. Opt. Lett., 44, 1988(2019).

    [13] T. H. Wang, S. Nandy, H. S. Salehi, P. D. Kumavor, Q. Zhu. A low-cost photoacoustic microscopy system with a laser diode excitation. Biomed. Opt. Express, 5, 3053(2014).

    [14] P. K. Upputuri, M. Pramanik. Performance characterization of low-cost, high-speed, portable pulsed laser diode photoacoustic tomography (PLD-PAT) system. Biomed. Opt. Express, 6, 4118(2015).

    [15] A. Stylogiannis, L. Prade, A. Buehler, J. Aguirre, V. Ntziachristos. Continuous wave laser diodes enable fast optoacoustic imaging. Photoacoustics, 9, 31(2018).

    [16] W. Xia, M. K. A. Singh, E. Maneas, N. Sato, Y. Shigeta, T. Agano, S. Ourselin, S. J. West, A. E. Desjardins. Handheld real-time LED-based photoacoustic and ultrasound imaging system for accurate visualization of clinical metal needles and superficial vasculature to guide minimally invasive procedures. Sensors, 18, 1394(2018).

    [17] L. Zeng, G. Liu, D. Yang, X. Ji. Cost-efficient laser-diode-induced optical-resolution photoacoustic microscopy for two-dimensional/three-dimensional biomedical imaging. J. Biomed. Opt., 19, 076017(2014).

    [18] L. Zeng, Z. Piao, S. Huang, W. Jia, Z. Chen. Label-free optical-resolution photoacoustic microscopy of superficial microvasculature using a compact visible laser diode excitation. Opt. Express, 23, 31026(2015).

    [19] J. Yao, L. V. Wang. Sensitivity of photoacoustic microscopy. Photoacoustics, 2, 87(2014).

    [20] L. V. Wang, S. Hu. Photoacoustic tomography: in vivo imaging from organelles to organs. Science, 335, 1458(2012).

    [21] X. J. Dai, H. Yang, H. B. Jiang. In vivo photoacoustic imaging of vasculature with a low-cost miniature light emitting diode excitation. Opt. Lett., 42, 1456(2017).

    [22] M. Erfanzadeh, Q. Zhu. Photoacoustic imaging with low-cost sources: a review. Photoacoustics, 14, 1(2019).

    [23] S. K. Kalva, P. K. Upputuri, M. Pramanik. High-speed, low-cost, pulsed-laser-diode-based second-generation desktop photoacoustic tomography system. Opt. Lett., 44, 81(2019).

    [24] L. Zeng, G. Liu, D. Yang, X. Ji. Portable optical-resolution photoacoustic microscopy with a pulsed laser diode excitation. Appl. Phys. Lett., 102, 053704(2013).

    [25] Q. Yao, Y. Ding, G. Liu, L. Zeng. Low-cost photoacoustic imaging systems based on laser diode and light-emitting diode excitation. J. Innov. Opt. Health Sci., 10, 1730003(2017).

    [26] R. Cao, J. P. Kilroy, B. Ning, T. X. Wang, J. A. Hossack, S. Hu. Multispectral photoacoustic microscopy based on an optical–acoustic objective. Photoacoustics, 3, 55(2015).

    [27] H. Wang, X. Yang, Y. Liu, B. Jiang, Q. Luo. Reflection-mode optical-resolution photoacoustic microscopy based on a reflective objective. Opt. Express, 21, 24210(2013).

    [28] C. Zhang, K. Maslov, J. Yao, L. V. Wang. In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer. J. Biomed. Opt., 17, 116016(2012).

    [29] . ANSI Z136.1–2007: American National Standard for Safe Use of Lasers(2007).

    [30] M. Erfanzadeh, P. D. Kumavor, Q. Zhu. Laser scanning laser diode photoacoustic microscopy system. Photoacoustics, 9, 1(2018).

    [31] J. Cheng, Y. Chen, J.-W. Wu, X.-R. Ji, S.-H. Wu. 3D printing of BaTiO3 piezoelectric ceramics for a focused ultrasonic array. Sensors, 19(2019).

    [32] Y. Chen, X. Bao, C.-M. Wong, J. Cheng, H. Wu, H. Song, X. Ji, S. Wu. PZT ceramics fabricated based on stereolithography for an ultrasound transducer array application. Ceram. Int., 44, 22725(2018).

    [33] T. J. Allen, P. C. Beard. Dual wavelength laser diode excitation source for 2D photoacoustic imaging. Proc. SPIE, 6437, 64371U(2007).

    CLP Journals

    [1] Peng Sun, Mengdie Zhang, Fengliang Dong, Liefeng Feng, Weiguo Chu. Broadband achromatic polarization insensitive metalens over 950 nm bandwidth in the visible and near-infrared[J]. Chinese Optics Letters, 2022, 20(1): 013601

    Data from CrossRef

    [1] Hongliang Li, Woo‐Bin Lee, Changyi Zhou, Duk‐Yong Choi, Sang‐Shin Lee. Flat Retroreflector Based on a Metasurface Doublet Enabling Reliable and Angle‐Tolerant Free‐Space Optical Link. Advanced Optical Materials, 2100796(2021).

    Lijun Deng, Qi Chen, Yang Bai, Guodong Liu, Lüming Zeng, Xuanrong Ji. Compact long-working-distance laser-diode-based photoacoustic microscopy with a reflective objective[J]. Chinese Optics Letters, 2021, 19(7): 071701
    Download Citation