• Journal of Innovative Optical Health Sciences
  • Vol. 11, Issue 4, 1850016 (2018)
Jie Chen, Xu Tan, Shenglin Luo, Lei Long, Lang Liu, Zujuan Liu, Yu Wang*, and Chunmeng Shi
Author Affiliations
  • State Key Laboratory of Trauma, Burns and Combined Injury Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine Army Medical University, 30, Gaotanyan Street, Chongqing 400038, P. R. China
  • show less
    DOI: 10.1142/s1793545818500165 Cite this Article
    Jie Chen, Xu Tan, Shenglin Luo, Lei Long, Lang Liu, Zujuan Liu, Yu Wang, Chunmeng Shi. Identification of a mitochondria-targeting fluorescent small molecule for dual phototherapy[J]. Journal of Innovative Optical Health Sciences, 2018, 11(4): 1850016 Copy Citation Text show less
    References

    [1] S. L. Luo, Z. Y. Yang, X. Tan, Y. Wang, Y. P. Zeng, Y. Wang, C. M. Li and R. Li, “Multifunctional photosensitizer grafted on polyethylene glycol and polyethylenimine dual-functionalized nanographene oxide for cancer-targeted near-infrared imaging and synergistic phototherapy," ACS. Appl. Mater. Interfaces 8, 17176–17186 (2016).

    [2] N. Li, T. T. Li, C. Hu, X. M. Lei, Y. P. Zuo and H. Y. Han, “Targeted near-infrared fluorescent turn-on nanoprobe for activatable imaging and effective phototherapy of cancer cells," ACS. Appl. Mater. Interfaces 8, 15013–15023 (2016).

    [3] R. R. Guo, H. B. Peng, Y. Tian, S. Shen and W. L. Yang, “Mitochondria-targeting magnetic composite nanoparticles for enhanced phototherapy of cancer," Small 12, 4541–4552 (2016).

    [4] Z. H. Sheng, D. H. Hu, M. B. Zheng, P. F. Zhao, H. L. Liu, D. Y. Gao, P. Gong, G. H. Gao, P. F. Zhang, Y. F. Ma and L. T. Cai, “Smart human serum albumin-indocyanine green nanoparticles generated by programmed assembly for dual-modal imaging-guided cancer synergistic phototherapy," ACS. Nano 8, 12310–12322 (2014).

    [5] R. Chen, X. Wang, X. K. Yao, X. C. Zheng, J. Wang and X. Q. Jiang, “Near-IR-triggered photothermal/photodynamic dual-modality therapy system via chitosan hybrid nanosphere," Biomaterials 34, 8314–8322 (2013).

    [6] J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue and T. Hasan, “Imaging and photodynamic therapy: Mechanisms, monitoring, and optimization," Chem. Rev. 110, 2795–2838 (2010).

    [7] E. Boisselier and D. Astruc, “Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity," Chem. Soc. Rev. 38, 1759–1782 (2009).

    [8] E. J. Sanchez-Barcelo and M. D. Mediavilla, “Recent patents on light-based therapies: Photodynamic therapy, photothermal therapy and photoimmunotherapy," Recent. Pat. Endocr. Metab. Immune Drug Discov. 8, 1–8 (2014).

    [9] L. W. Lin, L. Xiong, Y. Wen, S. L. Lei, X. F. Deng, Z. P. Liu, W. Chen and X. G. Miao, “Active targeting of nano-photosensitizer delivery systems for photodynamic therapy of cancer stem cells," J. Biomed. Nanotechnol. 11, 531–554 (2015).

    [10] T. G. St Denis and M. R. Hamblin, “Synthesis, bioanalysis and biodistribution of photosensitizer conjugates for photodynamic therapy," Bioanalysis 5, 1099–1114 (2013).

    [11] N. V. Kudinova and T. T. Berezov, “Photodynamic therapy: Search for ideal photosensitizer," Biomed. Khim. 55, 558–569 (2009).

    [12] C. W. Chung, C. W. Choi, Y. I. Jeong and D. H. Kang, “Nano-self assembled photosensitizer composed of methoxy poly(ethylene glycol)-conjugated chlorin e6 for enhanced photosensing of HCT116 cells," J. Nanosci. Nanotechnol. 16, 1379–1383 (2016).

    [13] W. X. Hou, X. Zhao, X. Q. Qian, F. Pan, C. L. Zhang, Y. M. Yang, J. M. de la Fuente and D. X. Cui, “pH-sensitive self-assembling nanoparticles for tumor near-infrared fluorescence imaging and chemo-photodynamic combination therapy," Nanoscale 8, 104–116 (2016).

    [14] I. E. Furre, S. Shahzidi, Z. Luksiene, M. T. Moller, E. Borgen, J. Morgan, K. Tkacz-Stachowska, J. M. Nesland and Q. Peng, “Targeting PBR by hexaminolevulinate-mediated photodynamic therapy induces apoptosis through translocation of apoptosis-inducing factor in human leukemia cells," Cancer. Res. 65, 11051–11060 (2005).

    [15] Z. C. Fan, X. J. Cui, D. Wei, W. Liu, B. H. Li, H. He, H. M. Ye, N. S. Zhu and X. B. Wei, “eEF1A1 binds and enriches protoporphyrin IX in cancer cells in 5-aminolevulinic acid-based photodynamic therapy," Sci. Rep. 6, 25353 (2016).

    [16] W. B. Wu, D. Mao, F. Hu, S. D. Xu, C. Chen, C. J. Zhang, X. M. Cheng, Y. Y. Yuan, D. Ding, D. L. Kong and B. Liu, “A highly e±cient and photostable photosensitizer with near-infrared aggregation-induced emission for image-guided photodynamic anticancer therapy," Adv. Mater. 29 (2017).

    [17] M. Berndt-Paetz, A. Weimann, N. Sieger, S. Schastak, Y. M. Riyad, J. Griebel, V. K. A. Arthanareeswaran, J. U. Stolzenburg and J. Neuhaus, “Tetrahydroporphyrin-tetratosylat (THPTS): A near-infrared photosensitizer for targeted and effcient photodynamic therapy (PDT) of human bladder carcinoma," Photodiagnosis. Photodyn. Ther. 18, 244–251 (2017).

    [18] T. Desmettre, J. M. Devoisselle and S. Mordon, “Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography," Surv. Ophthalmol. 45, 15–27 (2000).

    [19] R. Radzi, T. Osaki, T. T. suka, T. Imagama, S. Minami, Y. Nakayama and Y. Okamoto, “Photodynamic hyperthermal therapy with indocyanine green (ICG) induces apoptosis and cell cycle arrest in B16F10 murine melanoma cells," J. Vet. Med. Sci. 74, 545–551 (2012).

    [20] S. Luo, X. Tan, S. Fang, Y. Wang, T. Liu, X. Wang, Y. Yuan, H. Sun, Q. Qi and C. Shi, “Mitochondriatargeted small-molecule fluorophores for dual modal cancer phototherapy," Adv. Funct. Mater. 26, 2826–2835 (2016).

    Jie Chen, Xu Tan, Shenglin Luo, Lei Long, Lang Liu, Zujuan Liu, Yu Wang, Chunmeng Shi. Identification of a mitochondria-targeting fluorescent small molecule for dual phototherapy[J]. Journal of Innovative Optical Health Sciences, 2018, 11(4): 1850016
    Download Citation