• Chinese Journal of Quantum Electronics
  • Vol. 30, Issue 5, 513 (2013)
Ming-fang YI*, Jie ZHANG, Yu-jie ZHAO, Ye-wan MA, De-quan ZHU, Zu-song ZHU, Jian-cun YOU, and Qiang-sheng XIA
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2013.05.001 Cite this Article
    YI Ming-fang, ZHANG Jie, ZHAO Yu-jie, MA Ye-wan, ZHU De-quan, ZHU Zu-song, YOU Jian-cun, XIA Qiang-sheng. Experimental investigation of fluorescence enhancement or quenching of Rhodamine B molecules caused by silver nano-cubes[J]. Chinese Journal of Quantum Electronics, 2013, 30(5): 513 Copy Citation Text show less
    References

    [1] Fu Y, Lakowicz J R. Modification of single molecule fluorescence near metallic nano structures [J]. Laser & Photon Rev., 2009, 3(1-2): 221-232.

    [2] Zhang J, Fu Y, Chowdhury M H, et al. Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: Coupling effect between metal particles [J]. Nano Lett., 2007, 7(7): 2101-2107.

    [3] Cade N I, Ritman-Meer T, Kwakwa K A, et al. The plasmonic engineering of metal nanoparticles for enhanced fluorescence and Raman scattering [J]. Nanotechnology, 2009, 20: 285201.

    [4] Hung Y J, Smolyaninov I I, Davis C C. Fluorescence enhancement by surface gratings [J]. Opt. Expr., 2006, 14(22): 10825-10830.

    [5] Hwang E, Smolyaninov I I, Davis C C. Surface plasmon polariton enhanced fluorescence from quantum dots on nanostructured metal surfaces [J]. Nano Lett., 2010, 10(3): 813-820.

    [6] Lakowicz J R, Shen Y, D’Auria S, et al. Radiative decay engineering 2. Eeffects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer [J]. Anal. Biochem., 2002, 301(2): 261-277.

    [7] Geddes C D, Lakowicz J R. Metal-enhanced fluorescence [J]. J. Fluoresc., 2002, 12(2): 121-129.

    [8] Kinkhabwala A, Yu Z, Fan S, et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna [J]. Nature Photonics, 2009, 3(11): 654-657.

    [11] Zayats A V, et al. Near-field photonics: Surface plasmon polaritons and localized surface plasmons [J]. J. Opt. A: Pure. Appl. Opt., 2003, 5: S16-S50.

    [12] Anger P, Bharadwaj P, Novotny L. Enhancement and quenching of single-molecule fluorescence [J]. Phys. Rev. Lett., 2006, 96: 113002.

    [13] Lin C Y, Lien C H, et al. Surface plasmon-enhanced and quenched two-photon excited fluorescence [J]. Opt. Expr., 2010, 18(12): 12807-12817.

    [14] Castanié E, Boffety M, Carminati R. Fluorescence quenching by a metal nanoparticle in the extreme near-field regime [J]. Opt. Lett., 2010, 35(3): 291-293.

    [15] Skrabalak S E, Au L, Li X, et al. Facile synthesis of Ag nanocubes and Au nanocages [J]. Nature Protocols, 2007, 2(9): 2182-2190.

    [16] Zhang D G, Yuan X C, Bouhelier A, et al. Excitation of surface plasmon polaritons guided mode by Rhodamine B molecules doped in a PMMA stripe [J]. Opt. Lett., 2010, 35(3): 408-410.

    [17] Zhang Y X, Dragan A, Geddes C D. Broad wavelength range metal-enhanced fluorescence using nickel nanodeposits [J]. J Phys. Chem. C, 2009, 113(36): 15811-15816.

    [18] Zhang D, Yuan X, et al. Direct image of surface-plasmon-coupled emission by leakage radiation microscopy [J]. Appl. Opt., 2010, 49(5): 875-879.

    [19] Zhang D G, Moh K J, Yuan X C. Surface plasmon-coupled emission from shaped PMMA films doped with fluorescence molecules [J]. Opt. Expr., 2010, 18(12): 12185-12190.

    [20] Valeur B. Molecular Fluorescence: Principles and Applications [M]. Wiley-VCH Verlag GmbH, 2001.

    [21] Lakowicz J R. Radiative decay engineering 5: Metal-enhanced fluorescence and plasmon emission [J]. Anal. Biochem., 2005, 337: 24.

    [22] Mattei G, Mazzoldi P, Bernas H. Metal Nanoclusters for Optical Properties [M]. Berlin Heidelberg: Springer-Verlag, 2010.

    [23] Maier S A. Plasmonics: Fundamentals and Applications [M]. Springer Science Business Media LLC, 2007.

    [24] Kravets V G, Zoriniants G, Burrows C P, et al. Cascaded optical field enhancement in composite plasmonic nanostructures [J]. Phys. Rev. Lett., 2010, 105: 246806.

    [25] Grigorenko A N, Kravets V G, Zoriniants G, et al. Composite Au nanostructures for fluorescence studies in visible light [J]. Nano Lett., 2010, 10(3): 874-879.

    [26] Kim K, Lee Y M, Lee J W, et al. Metal-enhanced fluorescence of Rhodamine B isothiocyanate from micrometer-sized silver powders [J]. Langmuir, 2009, 25(5): 2641-2645.

    [27] Farcǎu C, A tilean S. Silver half-shell arrays with controlled plasmonic response for fluorescence enhancement optimization [J]. Appl. Phys. Lett., 2009, 95(19): 193110.

    [28] Mackowski S, Wormke S, Maier A J, et al. Metal-enhanced fluorescence of chlorophylls in single light-harvesting complexes [J]. Nano Lett., 2008, 8(2): 558-564.

    [29] Aslan K, Leonenko Z, Lakowicz J R, et al. Fast and slow deposition of silver nanorods on planar surfaces: Application to metal-enhanced fluorescence [J]. J. Phys. Chem. B, 2005, 109(8): 3157-3162.

    [30] Bakker R M, Yuan H K, Liu Z T, et al. Enhanced localized fluorescence in plasmonic nanoantennae [J]. Appl. Phys. Lett. 2008, 92: 043101.

    [31] Parfenov A, Gryczynski I, Malicka J, et al. Enhanced fluorescence from fluorophores on fractal silver surfaces [J]. J. Phys. Chem. B, 2003, 107(34): 8829-8833.

    [32] PonsIgor T. Medintz L, Sapsford K E, et al. On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles [J]. Nano Lett., 2007, 7(10): 3157-3164.

    YI Ming-fang, ZHANG Jie, ZHAO Yu-jie, MA Ye-wan, ZHU De-quan, ZHU Zu-song, YOU Jian-cun, XIA Qiang-sheng. Experimental investigation of fluorescence enhancement or quenching of Rhodamine B molecules caused by silver nano-cubes[J]. Chinese Journal of Quantum Electronics, 2013, 30(5): 513
    Download Citation