• Advanced Photonics
  • Vol. 3, Issue 4, 044001 (2021)
Jongchan Park1, David J. Brady2, Guoan Zheng3、4, Lei Tian5, and Liang Gao1、*
Author Affiliations
  • 1University of California, Department of Bioengineering, Los Angeles, California, United States
  • 2University of Arizona, James C. Wyant College of Optical Sciences, Tucson, Arizona, United States
  • 3University of Connecticut, Department of Biomedical Engineering, Storrs, Connecticut, United States
  • 4University of Connecticut, Department of Electrical and Computer Engineering, Storrs, Connecticut, United States
  • 5Boston University, Department of Electrical and Computer Engineering, Boston, Massachusetts, United States
  • show less
    DOI: 10.1117/1.AP.3.4.044001 Cite this Article Set citation alerts
    Jongchan Park, David J. Brady, Guoan Zheng, Lei Tian, Liang Gao. Review of bio-optical imaging systems with a high space-bandwidth product[J]. Advanced Photonics, 2021, 3(4): 044001 Copy Citation Text show less
    References

    [1] J. N. Stirman et al. Wide field-of-view, multi-region, two-photon imaging of neuronal activity in the mammalian brain. Nat. Biotechnol., 34, 857-862(2016).

    [2] A. W. Lohmann et al. Space–bandwidth product of optical signals and systems. J. Opt. Soc. Am. A, 13, 470-473(1996).

    [3] D. Mendlovic, A. W. Lohmann, Z. Zalevsky. Space–bandwidth product adaptation and its application to superresolution: examples. J. Opt. Soc. Am. A, 14, 563-567(1997).

    [4] Canon 2U250MRXS 250MP CMOS sensor.

    [5] ISOCELL Bright HMX | mobile image sensor | Samsung official.

    [6] A. W. Lohmann. Scaling laws for lens systems. Appl. Opt., 28, 4996-4998(1989).

    [7] R. S. Weinstein et al. An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study. Hum. Pathol., 35, 1303-1314(2004).

    [8] B. Wilburn et al. High performance imaging using large camera arrays, 765-776(2005).

    [9] A. Orth, K. Crozier. Microscopy with microlens arrays: high throughput, high resolution and light-field imaging. Opt. Express, 20, 13522-13531(2012).

    [10] A. Orth, K. Crozier. Gigapixel fluorescence microscopy with a water immersion microlens array. Opt. Express, 21, 2361-2368(2013).

    [11] G. Holzner et al. An optofluidic system with integrated microlens arrays for parallel imaging flow cytometry. Lab Chip, 18, 3631-3637(2018).

    [12] D. J. Brady, N. Hagen. Multiscale lens design. Opt. Express, 17, 10659-10674(2009).

    [13] D. J. Brady et al. Multiscale gigapixel photography. Nature, 486, 386-389(2012).

    [14] J. Fan et al. Video-rate imaging of biological dynamics at centimetre scale and micrometre resolution. Nat. Photonics, 13, 809-816(2019).

    [15] G. Zheng, R. Horstmeyer, C. Yang. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics, 7, 739-745(2013).

    [16] S. Dong et al. Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging. Opt. Express, 22, 13586-13599(2014).

    [17] L. Tian et al. Multiplexed coded illumination for Fourier ptychography with an LED array microscope. Biomed. Opt. Express, 5, 2376-2389(2014).

    [18] L. Tian et al. Computational illumination for high-speed in vitro Fourier ptychographic microscopy. Optica, 2, 904-911(2015).

    [19] J. Sun et al. Resolution-enhanced Fourier ptychographic microscopy based on high-numerical-aperture illuminations. Sci. Rep., 7, 1187(2017).

    [20] M. G. L. Gustafsson. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc., 198, 82-87(2000).

    [21] M. G. L. Gustafsson. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. U. S. A., 102, 13081-13086(2005).

    [22] T. R. Hillman et al. High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy. Opt. Express, 17, 7873-7892(2009).

    [23] S. Chowdhury, A.-H. Dhalla, J. Izatt. Structured oblique illumination microscopy for enhanced resolution imaging of non-fluorescent, coherently scattering samples. Biomed. Opt. Express, 3, 1841-1854(2012).

    [24] W. Luo et al. Synthetic aperture-based on-chip microscopy. Light Sci. Appl., 4, e261(2015).

    [25] S. Chowdhury et al. Refractive index tomography with structured illumination. Optica, 4, 537-545(2017).

    [26] B. Potsaid, Y. Bellouard, J. T. Wen. Adaptive scanning optical microscope (ASOM): a multidisciplinary optical microscope design for large field of view and high resolution imaging. Opt. Express, 13, 6504-6518(2005).

    [27] M. Jang et al. Wavefront shaping with disorder-engineered metasurfaces. Nat. Photonics, 12, 84-90(2018).

    [28] N. J. Sofroniew et al. A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging. eLife, 5, e14472(2016).

    [29] Z. Kam et al. Computational adaptive optics for live three-dimensional biological imaging. Proc. Natl. Acad. Sci. U. S. A., 98, 3790-3795(2001).

    [30] S. G. Adie et al. Computational adaptive optics for broadband optical interferometric tomography of biological tissue. Proc. Natl. Acad. Sci. U. S. A., 109, 7175-7180(2012).

    [31] G. Zheng et al. Characterization of spatially varying aberrations for wide field-of-view microscopy. Opt. Express, 21, 15131-15143(2013).

    [32] N. D. Shemonski et al. Computational high-resolution optical imaging of the living human retina. Nat. Photonics, 9, 440-443(2015).

    [33] Z. Kam et al. Modelling the application of adaptive optics to wide-field microscope live imaging. J. Microsc., 226, 33-42(2007).

    [34] X. Tao et al. Adaptive optics confocal microscopy using direct wavefront sensing. Opt. Lett., 36, 1062-1064(2011).

    [35] M. J. Booth. Adaptive optical microscopy: the ongoing quest for a perfect image. Light Sci. Appl., 3, e165(2014).

    [36] J.-H. Park et al. Large-field-of-view imaging by multi-pupil adaptive optics. Nat. Methods, 14, 581-583(2017).

    [37] N. Ji. Adaptive optical fluorescence microscopy. Nat. Methods, 14, 374-380(2017).

    [38] T.-L. Liu et al. Observing the cell in its native state: imaging subcellular dynamics in multicellular organisms. Science, 360, eaaq1392(2018).

    [39] W. Bishara et al. Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution. Opt. Express, 18, 11181-11191(2010).

    [40] A. Greenbaum et al. Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy. Nat. Methods, 9, 889-895(2012).

    [41] S. O. Isikman et al. Giga-pixel lensfree holographic microscopy and tomography using color image sensors. PLoS One, 7, e45044(2012).

    [42] A. Greenbaum et al. Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy. Sci. Rep., 3, 1717(2013).

    [43] A. Greenbaum et al. Wide-field computational imaging of pathology slides using lens-free on-chip microscopy. Sci. Transl. Med., 6, 267ra175(2014).

    [44] E. McLeod, A. Ozcan. Microscopy without lenses. Phys. Today, 70, 50-56(2017).

    [45] M. Roy et al. A review of recent progress in lens-free imaging and sensing. Biosens. Bioelectron., 88, 130-143(2017).

    [46] T. Matsuyama, Y. Ohmura, D. M. Williamson. The lithographic lens: its history and evolution. Proc. SPIE, 6154, 615403(2006).

    [47] G. McConnell et al. A novel optical microscope for imaging large embryos and tissue volumes with sub-cellular resolution throughout. eLife, 5, e18659(2016).

    [48] G. McConnell, W. B. Amos. Application of the mesolens for subcellular resolution imaging of intact larval and whole adult Drosophila. J. Microsc., 270, 252-258(2018).

    [49] E. Armstrong. Relative brain size and metabolism in mammals. Science, 220, 1302-1304(1983).

    [50] G. T. di Francia. Degrees of freedom of an image. J. Opt. Soc. Am. A, 59, 799-804(1969).

    [51] J. W. Goodman. Introduction to Fourier Optics(2005).

    [52] J. Ellenberg et al. A call for public archives for biological image data. Nat. Methods, 15, 849-854(2018).

    [53] IDR: image data resource.

    [54] T. M. Cover, J. A. Thomas. Elements of Information Theory(1999).

    [55] P. B. Fellgett, E. H. Linfoot, R. O. Redman. On the assessment of optical images. Philos. Trans. R. Soc. London Ser. A, 247, 369-407(1955).

    [56] I. J. Cox, C. J. R. Sheppard. Information capacity and resolution in an optical system. J. Opt. Soc. Am. A, 3, 1152-1158(1986).

    [57] M. A. Neifeld. Information, resolution, and space–bandwidth product. Opt. Lett., 23, 1477-1479(1998).

    [58] M. G. Somekh, K. Hsu, M. C. Pitter. Resolution in structured illumination microscopy: a probabilistic approach. J. Opt. Soc. Am. A, 25, 1319-1329(2008).

    [59] S. Ram, E. S. Ward, R. J. Ober. Beyond Rayleigh’s criterion: a resolution measure with application to single-molecule microscopy. Proc. Natl. Acad. Sci. U. S. A., 103, 4457-4462(2006).

    [60] K. Kuniyoshi et al. A foveated wide angle lens for active vision. Proc. IEEE Int. Conf. Rob. and Autom., 2982-2988(1995).

    [61] N. Hagen, T. S. Tkaczyk. Foveated endoscopic lens. J. Biomed. Opt., 17, 021104(2012).

    [62] Z. Bian et al. Autofocusing technologies for whole slide imaging and automated microscopy. J. Biophotonics, 13, e202000227(2020).

    [63] S. Al-Janabi, A. Huisman, P. J. V. Diest. Digital pathology: current status and future perspectives. Histopathology, 61, 1-9(2012).

    [64] N. Farahani, A. Parwani, L. Pantanowitz. Whole slide imaging in pathology: advantages, limitations, and emerging perspectives. Pathol. Lab. Med. Int., 7, 23-33(2015).

    [65] L. Barisoni et al. Digital pathology and computational image analysis in nephropathology. Nat. Rev. Nephrol., 16, 669-685(2020).

    [66] B. McCall et al. Toward a low-cost compact array microscopy platform for detection of tuberculosis. Tuberculosis, 91, S54-S60(2011).

    [67] B. McCall et al. Evaluation of a miniature microscope objective designed for fluorescence array microscopy detection of Mycobacterium tuberculosis. Arch. Pathol. Lab. Med., 138, 379-389(2014).

    [68] B. McCall et al. Miniature objective lens for array digital pathology: design improvement based on clinical evaluation. Proc. SPIE, 9791, 97910K(2016).

    [69] M. J. Kidger. Fundamental Optical Design(2001).

    [70] B. H. Walker. Optical Engineering Fundamentals(2008).

    [71] H. S. Son et al. A multiscale, wide field, gigapixel camera(2011).

    [72] D. L. Marks et al. Microcamera aperture scale in monocentric gigapixel cameras. Appl. Opt., 50, 5824-5833(2011).

    [73] E. J. Tremblay et al. Design and scaling of monocentric multiscale imagers. Appl. Opt., 51, 4691-4702(2012).

    [74] W. Pang, D. J. Brady. Galilean monocentric multiscale optical systems. Opt. Express, 25, 20332-20339(2017).

    [75] I. Stamenov, I. P. Agurok, J. E. Ford. Optimization of two-glass monocentric lenses for compact panoramic imagers: general aberration analysis and specific designs. Appl. Opt., 51, 7648-7661(2012).

    [76] S. Karbasi et al. Curved fiber bundles for monocentric lens imaging. Proc. SPIE, 9579, 95790G(2015).

    [77] M. S. Kim et al. An aquatic-vision-inspired camera based on a monocentric lens and a silicon nanorod photodiode array. Nat. Electron., 3, 546-553(2020).

    [78] D. J. Brady et al. Parallel cameras. Optica, 5, 127-137(2018).

    [79] X. Ou et al. High numerical aperture Fourier ptychography: principle, implementation and characterization. Opt. Express, 23, 3472-3491(2015).

    [80] X. Ou, G. Zheng, C. Yang. Embedded pupil function recovery for Fourier ptychographic microscopy. Opt. Express, 22, 4960-4972(2014).

    [81] G. Zheng. Breakthroughs in photonics 2013: Fourier ptychographic imaging. IEEE Photonics J., 6, 0701207(2014).

    [82] W. Hoppe, G. Strube. Diffraction in inhomogeneous primary wave fields. 2. Optical experiments for phase determination of lattice interferences. Acta Crystallogr A, 25, 502-507(1969).

    [83] H. M. L. Faulkner, J. M. Rodenburg. Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm. Phys. Rev. Lett., 93, 023903(2004).

    [84] M. Ryle, A. Hewish. The synthesis of large radio telescopes. Mon. Not. R. Astron. Soc., 120, 220-230(1960).

    [85] T. M. Turpin et al. Theory of the synthetic aperture microscope. Proc. SPIE, 2566, 230-240(1995).

    [86] T. S. Ralston et al. Interferometric synthetic aperture microscopy. Nat. Phys., 3, 129-134(2007).

    [87] T. Gutzler et al. Coherent aperture-synthesis, wide-field, high-resolution holographic microscopy of biological tissue. Opt. Lett., 35, 1136-1138(2010).

    [88] Y. Baek et al. Kramers–Kronig holographic imaging for high-space-bandwidth product. Optica, 6, 45-51(2019).

    [89] L. Taylor. The phase retrieval problem. IEEE Trans. Antennas Propag., 29, 386-391(1981).

    [90] J. R. Fienup. Phase retrieval algorithms: a comparison. Appl. Opt., 21, 2758-2769(1982).

    [91] J. R. Fienup. Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support constraint. J. Opt. Soc. Am. A, 4, 118-123(1987).

    [92] R. W. Gerchberg. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik, 35, 237-246(1972).

    [93] G. Zheng. Fourier Ptychographic Imaging: A MATLAB Tutorial(2016).

    [94] T. Aidukas et al. Low-cost, sub-micron resolution, wide-field computational microscopy using opensource hardware. Sci. Rep., 9, 7457(2019).

    [95] S. Dong et al. FPscope: a field-portable high-resolution microscope using a cellphone lens. Biomed. Opt. Express, 5, 3305-3310(2014).

    [96] R. Horstmeyer et al. Digital pathology with Fourier ptychography. Comput. Med. Imaging Graph., 42, 38-43(2015).

    [97] A. J. Williams et al. Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis. J. Biomed. Opt., 19, 066007(2014).

    [98] H. Zhang et al. Field-portable quantitative lensless microscopy based on translated speckle illumination and sub-sampled ptychographic phase retrieval. Opt. Lett., 44, 1976-1979(2019).

    [99] Y. Xue et al. Reliable deep-learning-based phase imaging with uncertainty quantification. Optica, 6, 618-629(2019).

    [100] T. Nguyen et al. Deep learning approach for Fourier ptychography microscopy. Opt. Express, 26, 26470-26484(2018).

    [101] S. Jiang et al. Solving Fourier ptychographic imaging problems via neural network modeling and TensorFlow. Biomed. Opt. Express, 9, 3306-3319(2018).

    [102] S. Dong et al. Sparsely sampled Fourier ptychography. Opt. Express, 22, 5455-5464(2014).

    [103] O. Bunk et al. Influence of the overlap parameter on the convergence of the ptychographical iterative engine. Ultramicroscopy, 108, 481-487(2008).

    [104] K. Guo et al. Optimization of sampling pattern and the design of Fourier ptychographic illuminator. Opt. Express, 23, 6171-6180(2015).

    [105] F. Shamshad, F. Abbas, A. Ahmed. Deep Ptych: subsampled Fourier ptychography using generative priors. IEEE Int. Conf. Acoust., Speech and Signal Process., 7720-7724(2019).

    [106] Z. Bian, S. Dong, G. Zheng. Adaptive system correction for robust Fourier ptychographic imaging. Opt. Express, 21, 32400-32410(2013).

    [107] J. Chung et al. Wide field-of-view fluorescence image deconvolution with aberration-estimation from Fourier ptychography. Biomed. Opt. Express, 7, 352-368(2016).

    [108] J. Chung et al. Computational aberration compensation by coded-aperture-based correction of aberration obtained from optical Fourier coding and blur estimation. Optica, 6, 647-661(2019).

    [109] P. Song et al. Full-field Fourier ptychography (FFP): spatially varying pupil modeling and its application for rapid field-dependent aberration metrology. APL Photonics, 4, 050802(2019).

    [110] R. Horstmeyer et al. Overlapped Fourier coding for optical aberration removal. Opt. Express, 22, 24062-24080(2014).

    [111] C. Shen et al. Computational aberration correction of VIS-NIR multispectral imaging microscopy based on Fourier ptychography. Opt. Express, 27, 24923-24937(2019).

    [112] A. C. S. Chan et al. Parallel Fourier ptychographic microscopy for high-throughput screening with 96 cameras (96 Eyes). Sci. Rep., 9, 11114(2019).

    [113] R. Claveau et al. Digital refocusing and extended depth of field reconstruction in Fourier ptychographic microscopy. Biomed. Opt. Express, 11, 215-226(2020).

    [114] T. Kamal, L. Yang, W. M. Lee. In situ retrieval and correction of aberrations in moldless lenses using Fourier ptychography. Opt. Express, 26, 2708-2719(2018).

    [115] J. Chung, R. W. Horstmeyer, C. Yang. Fourier ptychographic retinal imaging methods and systems(2017).

    [116] P. Song et al. Super-resolution microscopy via ptychographic structured modulation of a diffuser. Opt. Lett., 44, 3645-3648(2019).

    [117] A. Matlock et al. Inverse scattering for reflection intensity phase microscopy. Biomed. Opt. Express, 11, 911-926(2020).

    [118] C. Yurdakul et al. High-throughput, high-resolution interferometric light microscopy of biological nanoparticles. ACS Nano, 14, 2002-2013(2020).

    [119] M.-A. Mycek, B. W. Pogue. Handbook of Biomedical Fluorescence(2003).

    [120] S. Dong et al. High-resolution fluorescence imaging via pattern-illuminated Fourier ptychography. Opt. Express, 22, 20856-20870(2014).

    [121] M. A. A. Neil, R. Juškaitis, T. Wilson. Method of obtaining optical sectioning by using structured light in a conventional microscope. Opt. Lett., 22, 1905-1907(1997).

    [122] R. Heintzmann, C. G. Cremer. Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating. Proc. SPIE, 3568, 185-196(1999).

    [123] L. Shao et al. I5S: wide-field light microscopy with 100-nm-scale resolution in three dimensions. Biophys. J., 94, 4971-4983(2008).

    [124] E. H. Rego et al. Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proc. Natl. Acad. Sci. U. S. A., 109, E135-E143(2012).

    [125] F. Wei, Z. Liu. Plasmonic structured illumination microscopy. Nano Lett., 10, 2531-2536(2010).

    [126] J. Lu et al. Super-resolution laser scanning microscopy through spatiotemporal modulation. Nano Lett., 9, 3883-3889(2009).

    [127] R.-W. Lu et al. Super-resolution scanning laser microscopy through virtually structured detection. Biomed. Opt. Express, 4, 1673-1682(2013).

    [128] Y. Zhi et al. Rapid super-resolution line-scanning microscopy through virtually structured detection. Opt. Lett., 40, 1683-1686(2015).

    [129] B. E. Urban et al. Super-resolution two-photon microscopy via scanning patterned illumination. Phys. Rev. E, 91, 042703(2015).

    [130] P. Gao, G. U. Nienhaus. Confocal laser scanning microscopy with spatiotemporal structured illumination. Opt. Lett., 41, 1193-1196(2016).

    [131] C. Kuang et al. Virtual k-space modulation optical microscopy. Phys. Rev. Lett., 117, 028102(2016).

    [132] H. Ni et al. Lateral resolution enhancement of confocal microscopy based on structured detection method with spatial light modulator. Opt. Express, 25, 2872-2882(2017).

    [133] C. R. Sheppard. Super-resolution in confocal imaging. Optik, 80, 53-54(1988).

    [134] C. B. Müller, J. Enderlein. Image scanning microscopy. Phys. Rev. Lett., 104, 198101(2010).

    [135] J. Huff. The Airyscan detector from ZEISS: confocal imaging with improved signal-to-noise ratio and super-resolution. Nat. Methods, 12, i-ii(2015).

    [136] A. G. York et al. Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy. Nat. Methods, 9, 749-754(2012).

    [137] A. G. York et al. Instant super-resolution imaging in live cells and embryos via analog image processing. Nat. Methods, 10, 1122-1126(2013).

    [138] M. Ingaramo et al. Two-photon excitation improves multifocal structured illumination microscopy in thick scattering tissue. Proc. Natl. Acad. Sci. U. S. A., 111, 5254-5259(2014).

    [139] J. Joseph et al. Improving the space-bandwidth product of structured illumination microscopy using a transillumination configuration. J. Phys. D, 53, 044006(2019).

    [140] L. J. Hornbeck. Deformable-mirror spatial light modulators. Proc. SPIE, 1150, 86-103(1990).

    [141] C. Paterson, I. Munro, J. C. Dainty. A low cost adaptive optics system using a membrane mirror. Opt. Express, 6, 175-185(2000).

    [142] G. D. Love. Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator. Appl. Opt., 36, 1517-1524(1997).

    [143] B. Potsaid, F. P. Finger, J. T. Wen. Automation of challenging spatial-temporal biomedical observations with the adaptive scanning optical microscope (ASOM). IEEE Trans. Autom. Sci. Eng., 6, 525-535(2009).

    [144] Thorlabs catalog: adaptive scanning optical microscope(2011).

    [145] B. C. Platt, R. Shack. History and principles of Shack–Hartmann wavefront sensing. J. Refract. Surg., 17, S573-S577(2001).

    [146] J.-W. Cha, J. Ballesta, P. T. So. Shack–Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy. J. Biomed. Opt., 15, 046022(2010).

    [147] R. J. Zawadzki et al. Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging. Opt. Express, 13, 8532-8546(2005).

    [148] Y. Zhang et al. Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina. Opt. Express, 13, 4792-4811(2005).

    [149] D. R. Williams. Imaging single cells in the living retina. Vision Res., 51, 1379-1396(2011).

    [150] B. Hermann et al. Adaptive-optics ultrahigh-resolution optical coherence tomography. Opt. Lett., 29, 2142-2144(2004).

    [151] M. Pircher, R. J. Zawadzki. Review of adaptive optics OCT (AO-OCT): principles and applications for retinal imaging. Biomed. Opt. Express, 8, 2536-2562(2017).

    [152] M. Bertero, P. Boccacci. Introduction to Inverse Problems in Imaging(1998).

    [153] D. G. Smith. Field Guide to Physical Optics(2013).

    [154] L. J. Allen, M. P. Oxley. Phase retrieval from series of images obtained by defocus variation. Opt. Commun., 199, 65-75(2001).

    [155] Fluorescence lifetime measurements and biological imaging | chemical reviews.

    [156] S. Ebbinghaus, M. Gruebele. Protein folding landscapes in the living cell. J. Phys. Chem. Lett., 2, 314-319(2011).

    [157] E. M. Hillman et al. High-speed 3D imaging of cellular activity in the brain using axially-extended beams and light sheets. Curr. Opin. Neurobiol., 50, 190-200(2018).

    [158] L.-H. Yeh, S. Chowdhury, L. Waller. Computational structured illumination for high-content fluorescence and phase microscopy. Biomed. Opt. Express, 10, 1978-1998(2019).

    [159] T. C. Südhof. Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron, 80, 675-690(2013).

    [160] J. P. Cunningham, B. M. Yu. Dimensionality reduction for large-scale neural recordings. Nat. Neurosci., 17, 1500-1509(2014).

    [161] R. C. Williamson et al. Bridging large-scale neuronal recordings and large-scale network models using dimensionality reduction. Curr. Opin. Neurobiol., 55, 40-47(2019).

    [162] A. P. Alivisatos et al. The brain activity map. Science, 339, 1284-1285(2013).

    [163] W. Koroshetz et al. The state of the NIH BRAIN Initiative. J. Neurosci., 38, 6427-6438(2018).

    [164] C. Copos et al. Connecting actin polymer dynamics across multiple scales(2020).

    [165] H. Gelman, M. Gruebele. Fast protein folding kinetics. Q. Rev. Biophys., 47, 95-142(2014).

    [166] S. Ebbinghaus et al. Protein folding stability and dynamics imaged in a living cell. Nat. Methods, 7, 319-323(2010).

    [167] F. Chen, W. Tillberg, E. S. Boyden. Expansion microscopy. Science, 347, 543-548(2015).

    [168] T. Ku et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat. Biotechnol., 34, 973-981(2016).

    [169] A. T. Wassie, Y. Zhao, E. S. Boyden. Expansion microscopy: principles and uses in biological research. Nat. Methods, 16, 33-41(2019).

    [170] R. Ling et al. High-throughput intensity diffraction tomography with a computational microscope. Biomed. Opt. Express, 9, 2130-2141(2018).

    [171] J. Li et al. High-speed in vitro intensity diffraction tomography. Adv. Photonics, 3, 066004(2019).

    [172] B. Chen, J. J. Stamnes. Validity of diffraction tomography based on the first Born and the first Rytov approximations. Appl. Opt., 37, 2996-3006(1998).

    [173] J. Lim et al. Comparative study of iterative reconstruction algorithms for missing cone problems in optical diffraction tomography. Opt. Express, 23, 16933-16948(2015).

    [174] L. Tian, L. Waller. 3D intensity and phase imaging from light field measurements in an LED array microscope. Optica, 2, 104-111(2015).

    [175] U. S. Kamilov et al. Learning approach to optical tomography. Optica, 2, 517-522(2015).

    [176] S. Chowdhury et al. High-resolution 3D refractive index microscopy of multiple-scattering samples from intensity images. Optica, 6, 1211-1219(2019).

    [177] J. Lim et al. High-fidelity optical diffraction tomography of multiple scattering samples. Light Sci. Appl., 8, 1(2019).

    [178] M. Chen et al. Multi-layer Born multiple-scattering model for 3D phase microscopy. Optica, 7, 394-403(2020).

    [179] F. Kraus et al. Quantitative 3D structured illumination microscopy of nuclear structures. Nat. Protoc., 12, 1011-1028(2017).

    [180] N. Hagen, L. Gao, T. S. Tkaczyk. Quantitative sectioning and noise analysis for structured illumination microscopy. Opt. Express, 20, 403-413(2012).

    [181] P. J. Keller et al. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science, 322, 1065-1069(2008).

    [182] B.-C. Chen et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science, 346, 1257998(2014).

    [183] R. M. Power, J. Huisken. A guide to light-sheet fluorescence microscopy for multiscale imaging. Nat. Methods, 14, 360-373(2017).

    [184] P. Genevet et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica, 4, 139-152(2017).

    [185] H. Yu et al. Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields. Nat. Photonics, 11, 186-192(2017).

    [186] J. Park, K. Lee, Y. Park. Ultrathin wide-angle large-area digital 3D holographic display using a non-periodic photon sieve. Nat. Commun., 10, 1304(2019).

    [187] F. Amat et al. Efficient processing and analysis of large-scale light-sheet microscopy data. Nat. Protoc., 10, 1679-1696(2015).

    CLP Journals

    [1] Song Zhang, Man Jiang, Can Li, Rongtao Su, Pu Zhou, Zongfu Jiang. High-power broadband supercontinuum generation through a simple narrow-bandwidth FBGs-based fiber laser cavity[J]. Chinese Optics Letters, 2022, 20(1): 011405

    Jongchan Park, David J. Brady, Guoan Zheng, Lei Tian, Liang Gao. Review of bio-optical imaging systems with a high space-bandwidth product[J]. Advanced Photonics, 2021, 3(4): 044001
    Download Citation