• Acta Optica Sinica
  • Vol. 42, Issue 11, 1134021 (2022)
Yinren Shou1, Zhuo Pan1, Zhengxuan Cao1, Dahui Wang2, Pengjie Wang1, Jianbo Liu1, Zhusong Mei1, Defeng Kong1, Yanying Zhao1, Xueqing Yan1、3、4, and Wenjun Ma1、3、*
Author Affiliations
  • 1State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
  • 2State Key Laboratory of Laser Interaction with Matter, Northwest Institute of Nuclear Technology, Xi′an 710024, Shaanxi, China
  • 3Beijing Laser Acceleration Innovation Center, Beijing 101407, China
  • 4Center for Applied Physics and Technology, Peking University, Beijing 100871, China
  • show less
    DOI: 10.3788/AOS202242.1134021 Cite this Article Set citation alerts
    Yinren Shou, Zhuo Pan, Zhengxuan Cao, Dahui Wang, Pengjie Wang, Jianbo Liu, Zhusong Mei, Defeng Kong, Yanying Zhao, Xueqing Yan, Wenjun Ma. Efficient Extreme-Ultraviolet Continuum from Carbon Nanotube Foams[J]. Acta Optica Sinica, 2022, 42(11): 1134021 Copy Citation Text show less
    References

    [1] Attwood D[M]. Soft X-rays and extreme ultraviolet radiation: principles and applications(2000).

    [2] Zong N, Hu W M, Wang Z M et al. Research progress on laser-produced plasma light source for 13.5 nm extreme ultraviolet lithography[J]. Chinese Optics, 13, 28-42(2020).

    [3] Baksh P D, Ostr il M, Miszczak M et al. 6(18): eaaz3025[J]. correlative extreme ultraviolet coherent imaging of mouse hippocampal neurons at high resolution. Science Advances(2020).

    [4] Yu Y, Li Q M, Yang J Y et al. Dalian extreme ultraviolet coherent light source[J]. Chinese Journal of Lasers, 46, 0100005(2019).

    [5] Wang W T, Feng K, Ke L T et al. Free-electron lasing at 27 nanometres based on a laser wakefield accelerator[J]. Nature, 595, 516-520(2021).

    [6] Zhao Y P, Xu Q, Li Q et al. 13.5 nm extreme ultraviolet light source based on discharge produced Xe plasma[J]. Chinese Journal of Lasers, 45, 1100001(2018).

    [7] Xu S Y, Li Y F, Zhu X X et al. Dispersion control and beamline design of extreme ultraviolet attosecond pulses[J]. Chinese Journal of Lasers, 48, 0501009(2021).

    [8] Fomenkov I V, Schafgans A A, Tao Y Z et al. Industrialization of a robust EUV source for high-volume manufacturing and power scaling beyond 250 W[J]. Proceedings of SPIE, 10583, 1058327(2018).

    [9] Li Z G, Dou Y P, Xie Z et al. Characteristics of extreme ultraviolet emission from laser-produced plasma on structured Sn target[J]. Chinese Journal of Lasers, 48, 1601005(2021).

    [10] He J, Wu T, Yang L. Study on ultraviolet radiation characteristics of pulse laser-induced hafnium plasma[J]. Laser & Optoelectronics Progress, 57, 191402(2020).

    [11] Wang P J, Qi G J, Pan Z et al. Fabrication of large-area uniform carbon nanotube foams as near-critical-density targets for laser-plasma experiments[J]. High Power Laser Science and Engineering, 9, e29(2021).

    [12] Ma W J, Kim I J, Yu J Q et al. Laser acceleration of highly energetic carbon ions using a double-layer target composed of slightly underdense plasma and ultrathin foil[J]. Physical Review Letters, 122, 014803(2019).

    [13] Bin J H, Ma W J, Wang H Y et al. Ion acceleration using relativistic pulse shaping in near-critical-density plasmas[J]. Physical Review Letters, 115, 064801(2015).

    [14] Wang P J, Gong Z, Lee S G et al. Super-heavy ions acceleration driven by ultrashort laser pulses at ultrahigh intensity[J]. Physical Review X, 11, 021049(2021).

    [15] Tan B Z, Yang Q G, Liu D B et al. Experimental study on Si K-edge X-ray absorption near-edge structure with M-shell radiation[J]. Acta Optica Sinica, 38, 0330001(2018).

    [16] Wang Z S, Huang Q S, Zhang Z et al. Extreme ultraviolet, X-ray and neutron thin film optical components and systems[J]. Acta Optica Sinica, 41, 0131001(2021).

    [17] Liu M, Li Y Q. Graded multilayer film design method of anamorphic magnification extreme ultraviolet lithography objective system[J]. Acta Optica Sinica, 40, 0522001(2020).

    [18] Choi I W, Jeon C, Lee S G et al. Highly efficient double plasma mirror producing ultrahigh-contrast multi-petawatt laser pulses[J]. Optics Letters, 45, 6342-6345(2020).

    [19] Ammosov M V, Delone N B, Krainov V P. Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field[J]. Soviet Journal of Experimental and Theoretical Physics, 64, 1191(1986).

    [20] Shou Y R, Wang D H, Wang P J et al. Automated positioning of transparent targets using defocusing method in a laser proton accelerator[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 927, 236-239(2019).

    [21] Futaba D N, Hata K, Yamada T et al. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes[J]. Nature Materials, 5, 987-994(2006).

    [22] Zhu Q, Yuan X T, Zhu Y H et al. Flexible solid-state supercapacitors based on shrunk high-density aligned carbon nanotube arrays[J]. Acta Physica Sinica, 67, 028201(2018).

    [23] Ding T, Rebholz M, Aufleger L et al. Nonlinear coherence effects in transient-absorption ion spectroscopy with stochastic extreme-ultraviolet free-electron laser pulses[J]. Physical Review Letters, 123, 103001(2019).

    [24] Derouillat J, Beck A, Pérez F et al. Smilei: a collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation[J]. Computer Physics Communications, 222, 351-373(2018).

    [25] Shou Y R, Hu R H, Gong Z et al. Cascaded generation of isolated sub-10 attosecond half-cycle pulses[J]. New Journal of Physics, 23, 053003(2021).

    [26] Shen X F, Pukhov A, Günther M M et al. Bright betatron X-rays generation from picosecond laser interactions with long-scale near critical density plasmas[J]. Applied Physics Letters, 118, 134102(2021).

    [27] Chen J Y, Xu S, Tang N et al. Enhanced soft X-ray betatron radiation from a transversely oscillating laser plasma wake[J]. Optics Express, 29, 13302-13313(2021).

    [28] Shou Y R, Wang D H, Wang P J et al. High-efficiency generation of narrowband soft X-rays from carbon nanotube foams irradiated by relativistic femtosecond lasers[J]. Optics Letters, 46, 3969-3972(2021).

    [29] Chung H K, Chen M H, Morgan W L et al. FLYCHK: generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements[J]. High Energy Density Physics, 1, 3-12(2005).

    [30] Nishikawa T, Suzuki S, Watanabe Y et al. Efficient water-window X-ray pulse generation from femtosecond-laser-produced plasma by using a carbon nanotube target[J]. Applied Physics B, 78, 885-890(2004).

    Yinren Shou, Zhuo Pan, Zhengxuan Cao, Dahui Wang, Pengjie Wang, Jianbo Liu, Zhusong Mei, Defeng Kong, Yanying Zhao, Xueqing Yan, Wenjun Ma. Efficient Extreme-Ultraviolet Continuum from Carbon Nanotube Foams[J]. Acta Optica Sinica, 2022, 42(11): 1134021
    Download Citation