• Laser & Optoelectronics Progress
  • Vol. 58, Issue 4, 0428002 (2021)
Mu Yang*, Shaoyuan Cheng, Chengguang Cui, Hongchen Tang, and Zhihao Zhu
Author Affiliations
  • Beijing Institute of Space Mechanics and Electricity, Beijing 100094, China
  • show less
    DOI: 10.3788/LOP202158.0428002 Cite this Article Set citation alerts
    Mu Yang, Shaoyuan Cheng, Chengguang Cui, Hongchen Tang, Zhihao Zhu. Ground Experimental System for Satellite Dynamic Imaging Mode[J]. Laser & Optoelectronics Progress, 2021, 58(4): 0428002 Copy Citation Text show less
    References

    [1] Xu W W, Zhang L M, Li X et al. On-orbit radiometric calibration of high-resolution optical satellite camera based on wide dynamic targets[J]. Acta Optica Sinica, 39, 1028004(2019).

    [2] Men H T, Li G Y, Chen J Y et al. Refined simulation methods of laser altimetry satellite echo waveform[J]. Chinese Journal of Lasers, 46, 0110004(2019).

    [3] Lu R R, Sun H B, Fu S F et al. Point cloud registration based satellite motion parameter identification method[J]. Laser & Optoelectronics Progress, 56, 141503(2019).

    [4] Zhang X W, Dai J, Liu F Q. Research on working mode of remote sensing satellite with agile attitude control[J]. Spacecraft Engineering, 20, 32-38(2011).

    [5] Tan W, Qi W W, He H Y et al. An on-board autofocusing method for scanning agile remote sensing satellite[J]. Acta Optica Sinica, 40, 0528002(2020).

    [6] Liu Y L, Cao D J. Analysis method on effect of jitter on high resolution agile satellite imaging[J]. Spacecraft Recovery & Remote Sensing, 35, 46-53(2014).

    [7] Yang M, Cheng S Y, Yu F et al. -08-09(2019).

    [8] Beaumet G, Verfaillie G, Charmeau M C. Feasibility of autonomous decision making on board an agile earth-observing satellite[J]. Computational Intelligence, 27, 123-139(2011). http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8640.2010.00375.x

    [9] Miao Y, Wang F. Optimize-by-priority on-orbit task real-time planning for agile imaging satellite[J]. Optics and Precision Engineering, 26, 150-160(2018).

    [10] Wang H J, He H, Yang Z. Scheduling of agile satellites based on an improved quantum genetic algorithm[J]. Journal of Astronautics, 39, 1266-1274(2018).

    [11] Li Z L, Li X J, Zhang D L. Proactive scheduling of agile imaging satellite based on improved differential evolution algorithm[J]. Systems Engineering and Electronics, 40, 353-359(2018).

    [12] Bronowicki A J. Vibration isolator for large space telescopes[J]. Journal of Spacecraft and Rockets, 43, 45-53(2006). http://arc.aiaa.org/doi/abs/10.2514/1.12036

    [13] Zhang W, Zhao Y B, Liao H et al. Design of an active-quiet isolated and master-slave coordination controlled dual-super satellite platform[J]. Aerospace Shanghai, 31, 7-11, 30(2014).

    [14] Wu X W. Research on attitude maneuvering planning method of agile satellite[D]. Harbin: Harbin Engineering University(2016).

    [15] Fan G W, Chang L, Yang X B et al. Control strategy of hybrid actuator for novel imaging modes of agile satellites[J]. Acta Automatica Sinica, 43, 1858-1868(2017).

    [16] Chen J W, Feng H J, Pan K C et al. An optimization method for registration and mosaicking of remote sensing images[J]. Optik-International Journal for Light and Electron Optics, 125, 697-703(2014).

    [17] Wu J, Li N, Xu Y F et al. Research on imaging quality of super agile satellite with dynamic imaging mode[J]. Optics & Optoelectronic Technology, 16, 83-89(2018).

    [18] Xue X C, Fu Y, Han C S. Confirmation of satellite attitude stabilization for TDI CCD camera[J]. Chinese Optics, 6, 767-772(2013).

    [19] Cheng S Y, Yang M, Jiang H J et al. Theoretical analysis of the super agile high resolution remote sensing satellite for maneuvering imaging[J]. Infrared and Laser Engineering, 48, 255-261(2019).

    [20] Fan C, Li Y C, Wang F et al. Analysis of factors having influence on image quality of TDICCD camera[J]. Infrared, 29, 21-25, 48(2008).

    Mu Yang, Shaoyuan Cheng, Chengguang Cui, Hongchen Tang, Zhihao Zhu. Ground Experimental System for Satellite Dynamic Imaging Mode[J]. Laser & Optoelectronics Progress, 2021, 58(4): 0428002
    Download Citation