• Laser & Optoelectronics Progress
  • Vol. 62, Issue 11, 1127015 (2025)
Dongxuan Li1,2, Tao Zhao1,2, Siyao Huang1,2, Mengyao Yang1,2..., Zehong Chang1,2,** and Pei Zhang1,2,*|Show fewer author(s)
Author Affiliations
  • 1Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi , China
  • 2Shaanxi Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, Xi'an 710049, Shaanxi , China
  • show less
    DOI: 10.3788/LOP250732 Cite this Article Set citation alerts
    Dongxuan Li, Tao Zhao, Siyao Huang, Mengyao Yang, Zehong Chang, Pei Zhang. Progress and Prospect of Experimental Research on High-Dimensional Quantum Key Distribution (Invited)[J]. Laser & Optoelectronics Progress, 2025, 62(11): 1127015 Copy Citation Text show less
    References

    [1] Bennett C H, Brassard G. Quantum cryptography: public key distribution and coin tossing[J]. Theoretical Computer Science, 560, 7-11(2014).

    [2] Bennett C H, Brassard G, Mermin N D. Quantum cryptography without Bell’s theorem[J]. Physical Review Letters, 68, 557-559(1992).

    [3] Gisin N, Ribordy G, Tittel W et al. Quantum cryptography[J]. Reviews of Modern Physics, 74, 145-195(2002).

    [4] Chen Y J, Chen J, Sun X et al. Finite key optimization analysis for satellite-to-ground continuous-variable quantum key distribution[J]. Chinese Journal of Lasers, 52, 0612001(2025).

    [5] Scarani V, Bechmann-Pasquinucci H, Cerf N J et al. The security of practical quantum key distribution[J]. Reviews of Modern Physics, 81, 1301-1350(2009).

    [6] Cover T M[M]. Elements of information theory(1999).

    [7] Cerf N J, Bourennane M, Karlsson A et al. Security of quantum key distribution using d-level systems[J]. Physical Review Letters, 88, 127902(2002).

    [8] Ekert A K. Quantum cryptography based on Bell’s theorem[J]. Physical Review Letters, 67, 661-663(1991).

    [9] Liu Z, Fan H. Decay of multiqudit entanglement[J]. Physical Review A, 79, 064305(2009).

    [10] Sheridan L, Scarani V. Security proof for quantum key distribution using qudit systems[J]. Physical Review A, 82, 030301(2010).

    [11] Bechmann-Pasquinucci H, Tittel W. Quantum cryptography using larger alphabets[J]. Physical Review A, 61, 062308(2000).

    [12] Wootters W K, Zurek W H. A single quantum cannot be cloned[J]. Nature, 299, 802-803(1982).

    [13] Bužek V, Hillery M. Quantum copying: beyond the no-cloning theorem[J]. Physical Review A, 54, 1844-1852(1996).

    [14] Scarani V, Iblisdir S, Gisin N et al. Quantum cloning[J]. Reviews of Modern Physics, 77, 1225-1256(2005).

    [15] Erhard M, Fickler R, Krenn M et al. Twisted photons: new quantum perspectives in high dimensions[J]. Light: Science & Applications, 7, 17146(2018).

    [16] Sit A, Bouchard F, Fickler R et al. High-dimensional intracity quantum cryptography with structured photons[J]. Optica, 4, 1006-1010(2017).

    [17] Cañas G, Vera N, Cariñe J et al. High-dimensional decoy-state quantum key distribution over multicore telecommunication fibers[J]. Physical Review A, 96, 022317(2017).

    [18] da Lio B, Bacco D, Cozzolino D et al. Stable transmission of high-dimensional quantum states over a 2-km multicore fiber[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 6400108(2020).

    [19] Marcikic I, de Riedmatten H, Tittel W et al. Time-bin entangled qubits for quantum communication created by femtosecond pulses[J]. Physical Review A, 66, 062308(2002).

    [20] Islam N T, Lim C C W, Cahall C et al. Provably secure and high-rate quantum key distribution with time-bin qudits[J]. Science Advances, 3, e1701491(2017).

    [21] Steinlechner F, Ecker S, Fink M et al. Distribution of high-dimensional entanglement via an intra-city free-space link[J]. Nature Communications, 8, 15971(2017).

    [22] Martin A, Guerreiro T, Tiranov A et al. Quantifying photonic high-dimensional entanglement[J]. Physical Review Letters, 118, 110501(2017).

    [23] Shor P W, Preskill J. Simple proof of security of the BB84 quantum key distribution protocol[J]. Physical Review Letters, 85, 441-444(2000).

    [24] Cozzolino D, da Lio B, Bacco D et al. High-dimensional quantum communication: benefits, progress, and future challenges[J]. Advanced Quantum Technologies, 2, 1900038(2019).

    [25] Bechmann-Pasquinucci H, Peres A. Quantum cryptography with 3-state systems[J]. Physical Review Letters, 85, 3313-3316(2000).

    [26] Mafu M, Dudley A, Goyal S et al. Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases[J]. Physical Review A, 88, 032305(2013).

    [27] Ikuta T, Akibue S, Yonezu Y et al. Scalable implementation of (d+1) mutually unbiased bases for d-dimensional quantum key distribution[J]. Physical Review Research, 4, L042007(2022).

    [28] Gottesman D, Lo H K, Lutkenhaus N et al. Security of quantum key distribution with imperfect devices[C], 136(2004).

    [29] Wang X B. Beating the photon-number-splitting attack in practical quantum cryptography[J]. Physical Review Letters, 94, 230503(2005).

    [30] Lo H K, Ma X F, Chen K. Decoy state quantum key distribution[J]. Physical Review Letters, 94, 230504(2005).

    [31] Wang F X, Chen W, Yin Z Q et al. Characterizing high-quality high-dimensional quantum key distribution by state mapping between different degrees of freedom[J]. Physical Review Applied, 11, 024070(2019).

    [32] Shen Y J, Wang X J, Xie Z W et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities[J]. Light: Science & Applications, 8, 90(2019).

    [33] He C, Shen Y J, Forbes A. Towards higher-dimensional structured light[J]. Light: Science & Applications, 11, 205(2022).

    [34] Allen L, Beijersbergen M W, Spreeuw R J C et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 45, 8185-8189(1992).

    [35] Padgett M J. Orbital angular momentum 25 years on[J]. Optics Express, 25, 11265-11274(2017).

    [36] Mair A, Vaziri A, Weihs G et al. Entanglement of the orbital angular momentum states of photons[J]. Nature, 412, 313-316(2001).

    [37] Padgett M J, Allen L. The Poynting vector in Laguerre-Gaussian laser modes[J]. Optics Communications, 121, 36-40(1995).

    [38] Lyons A, Roger T, Westerberg N et al. How fast is a twisted photon?[J]. Optica, 5, 682-686(2018).

    [39] Zhang N J, Cao Q, Andy C et al. Propagation dynamics of spatiotemporal localized wave packets carrying transverse orbital angular momentum (invited)[J]. Acta Optica Sinica, 44, 1026018(2024).

    [40] Willner A E, Liu C. Perspective on using multiple orbital-angular-momentum beams for enhanced capacity in free-space optical communication links[J]. Nanophotonics, 10, 225-233(2020).

    [41] Nauerth S, Moll F, Rau M et al. Air-to-ground quantum communication[J]. Nature Photonics, 7, 382-386(2013).

    [42] Pugh C J, Kaiser S, Bourgoin J P et al. Airborne demonstration of a quantum key distribution receiver payload[J]. Quantum Science and Technology, 2, 024009(2017).

    [43] Zhang M, Zhang L, Wu J C et al. Detection and compensation of basis deviation in satellite-to-ground quantum communications[J]. Optics Express, 22, 9871-9886(2014).

    [44] Chen L J, Xi C B, Zhou J et al. Research and flight test on airborne laser Doppler velocimeter for unmanned aerial vehicles[J]. Acta Optica Sinica, 43, 1712002(2023).

    [45] Neff J A, Athale R A, Lee S H. Two-dimensional spatial light modulators: a tutorial[J]. Proceedings of the IEEE, 78, 826-855(1990).

    [46] Mirhosseini M, Magaña-Loaiza O S, Chen C C et al. Rapid generation of light beams carrying orbital angular momentum[J]. Optics Express, 21, 30196-30203(2013).

    [47] Naidoo D, Roux F S, Dudley A et al. Controlled generation of higher-order Poincaré sphere beams from a laser[J]. Nature Photonics, 10, 327-332(2016).

    [48] Forbes A, de Oliveira M, Dennis M R. Structured light[J]. Nature Photonics, 15, 253-262(2021).

    [49] Mirhosseini M, Magaña-Loaiza O S, O’Sullivan M N et al. High-dimensional quantum cryptography with twisted light[J]. New Journal of Physics, 17, 033033(2015).

    [50] Larocque H, Gagnon-Bischoff J, Mortimer D et al. Generalized optical angular momentum sorter and its application to high-dimensional quantum cryptography[J]. Optics Express, 25, 19832-19843(2017).

    [51] Cozzolino D, Bacco D, da Lio B et al. Orbital angular momentum states enabling fiber-based high-dimensional quantum communication[J]. Physical Review Applied, 11, 064058(2019).

    [52] Wang Q K, Wang F X, Liu J et al. High-dimensional quantum cryptography with hybrid orbital-angular-momentum states through 25 km of ring-core fiber: a proof-of-concept demonstration[J]. Physical Review Applied, 15, 064034(2021).

    [53] Padgett M J, Miatto F M, Lavery M P J et al. Divergence of an orbital-angular-momentum-carrying beam upon propagation[J]. New Journal of Physics, 17, 023011(2015).

    [54] Zhao J P, Mirhosseini M, Braverman B et al. Performance analysis of d-dimensional quantum cryptography under state-dependent diffraction[J]. Physical Review A, 100, 032319(2019).

    [55] Krenn M, Handsteiner J, Fink M et al. Twisted light transmission over 143 km[J]. Proceedings of the National Academy of Sciences of the United States of America, 113, 13648-13653(2016).

    [56] Wang F M, Zeng P, Zhao J P et al. High-dimensional quantum key distribution based on mutually partially unbiased bases[J]. Physical Review A, 101, 032340(2020).

    [57] Chang Z H, Wang Y L, Guo Z Y et al. Compact implementation of high-dimensional mutually partially unbiased bases protocol[J]. Quantum Science and Technology, 8, 035028(2023).

    [58] Krenn M, Handsteiner J, Fink M et al. Twisted photon entanglement through turbulent air across Vienna[J]. Proceedings of the National Academy of Sciences of the United States of America, 112, 14197-14201(2015).

    [59] Li Y, Yu L, Zhang Y X. Influence of anisotropic turbulence on the orbital angular momentum modes of Hermite-Gaussian vortex beam in the ocean[J]. Optics Express, 25, 12203-12215(2017).

    [60] Lavery M P J, Peuntinger C, Günthner K et al. Free-space propagation of high-dimensional structured optical fields in an urban environment[J]. Science Advances, 3, e1700552(2017).

    [61] Wang Z Q, Malaney R, Burnett B. Satellite-to-earth quantum key distribution via orbital angular momentum[J]. Physical Review Applied, 14, 064031(2020).

    [62] Zhu L, Wang A D, Deng M L et al. Free-space optical communication with quasi-ring Airy vortex beam under limited-size receiving aperture and atmospheric turbulence[J]. Optics Express, 29, 32580-32590(2021).

    [63] Liu X C, Wen J X, Li S B et al. Research on key rate of continuous variable quantum key distribution under turbulent channels[J]. Chinese Journal of Lasers, 50, 1412002(2023).

    [64] Zhong T, Zhou H C, Horansky R D et al. Photon-efficient quantum key distribution using time-energy entanglement with high-dimensional encoding[J]. New Journal of Physics, 17, 022002(2015).

    [65] Islam N T, Lim C C W, Cahall C et al. Scalable high-rate, high-dimensional time-bin encoding quantum key distribution[J]. Quantum Science and Technology, 4, 035008(2019).

    [66] Vagniluca I, Da Lio B, Rusca D et al. Efficient time-bin encoding for practical high-dimensional quantum key distribution[J]. Physical Review Applied, 14, 014051(2020).

    [67] Liu X, Yao X, Wang H Q et al. Energy-time entanglement-based dispersive optics quantum key distribution over optical fibers of 20 km[J]. Applied Physics Letters, 114, 141104(2019).

    [68] Chang K C, Sarihan M C, Cheng X et al. Large-alphabet time-bin quantum key distribution and Einstein-Podolsky-Rosen steering via dispersive optics[J]. Quantum Science and Technology, 9, 015018(2024).

    [69] Liu J Y, Lin Z H, Liu D N et al. High-dimensional quantum key distribution using energy-time entanglement over 242 km partially deployed fiber[J]. Quantum Science and Technology, 9, 015003(2024).

    [70] Zahidy M, Ribezzo D, De Lazzari C et al. Practical high-dimensional quantum key distribution protocol over deployed multicore fiber[J]. Nature Communications, 15, 1651(2024).

    [71] Yu H, Sciara S, Chemnitz M et al. Quantum key distribution implemented with d-level time-bin entangled photons[J]. Nature Communications, 16, 171(2025).

    [72] Sulimany K, Pelc G, Dudkiewicz R et al. High-dimensional coherent one-way quantum key distribution[J]. NPJ Quantum Information, 11, 16(2025).

    [73] Yang Y G, Liu B X, Xu G B et al. High-dimensional quantum key distribution via time-bin multiplexing and applications[J]. Netinfo Security, 24, 879-892(2024).

    [74] Gokul A, Natarajan H, Raghunathan V et al. Field implementation of higher dimensional time-bin encoded quantum key distribution within IISc campus[C], 1-5(2024).

    [75] Żukowski M, Zeilinger A, Horne M A. Realizable higher-dimensional two-particle entanglements via multiport beam splitters[J]. Physical Review A, 55, 2564-2579(1997).

    [76] Wang J W, Paesani S, Ding Y H et al. Multidimensional quantum entanglement with large-scale integrated optics[J]. Science, 360, 285-291(2018).

    [77] Krenn M, Hochrainer A, Lahiri M et al. Entanglement by path identity[J]. Physical Review Letters, 118, 080401(2017).

    [78] Ding Y H, Bacco D, Dalgaard K et al. High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits[J]. NPJ Quantum Information, 3, 25(2017).

    [79] Dellantonio L, Sørensen A S, Bacco D. High-dimensional measurement-device-independent quantum key distribution on two-dimensional subspaces[J]. Physical Review A, 98, 062301(2018).

    [80] da Lio B, Cozzolino D, Biagi N et al. Path-encoded high-dimensional quantum communication over a 2-km multicore fiber[J]. NPJ Quantum Information, 7, 63(2021).

    [81] Hu X M, Xing W B, Liu B H et al. Efficient distribution of high-dimensional entanglement through 11 km fiber[J]. Optica, 7, 738-743(2020).

    [82] Hu X M, Zhang C, Guo Y et al. Pathways for entanglement-based quantum communication in the face of high noise[J]. Physical Review Letters, 127, 110505(2021).

    [83] Zheng Y, Zhai C H, Liu D J et al. Multichip multidimensional quantum networks with entanglement retrievability[J]. Science, 381, 221-226(2023).

    [84] Doda M, Huber M, Murta G et al. Quantum key distribution overcoming extreme noise: simultaneous subspace coding using high-dimensional entanglement[J]. Physical Review Applied, 15, 034003(2021).

    [85] Zhong Z Q, Zhan X H, Chen J L et al. Hyperentanglement quantum communication over a 50 km noisy fiber channel[J]. Optica, 11, 1056-1061(2024).

    [86] Wang F X, Lu Q H, Chen W et al. Hybrid high-dimensional quantum key distribution for a composable quantum network[J]. Physical Review Applied, 19, 054060(2023).

    [87] Achatz L, Bulla L, Ecker S et al. Simultaneous transmission of hyper-entanglement in three degrees of freedom through a multicore fiber[J]. NPJ Quantum Information, 9, 45(2023).

    [88] Park C H, Woo M K, Park B K et al. 2×N twin-field quantum key distribution network configuration based on polarization, wavelength, and time division multiplexing[J]. NPJ Quantum Information, 8, 48(2022).

    Dongxuan Li, Tao Zhao, Siyao Huang, Mengyao Yang, Zehong Chang, Pei Zhang. Progress and Prospect of Experimental Research on High-Dimensional Quantum Key Distribution (Invited)[J]. Laser & Optoelectronics Progress, 2025, 62(11): 1127015
    Download Citation