• Acta Optica Sinica
  • Vol. 31, Issue 12, 1222007 (2011)
Xiao Xiao1、*, Zhang Zhiyou2, He Mingyang2, Xiao Zhigang1, and Xu Defu1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/aos201131.1222007 Cite this Article Set citation alerts
    Xiao Xiao, Zhang Zhiyou, He Mingyang, Xiao Zhigang, Xu Defu. Optimized Design of Silver Superlens for the Surface Plasmon Polaritons Interference Lithography Based on Backside-Exposure Technique[J]. Acta Optica Sinica, 2011, 31(12): 1222007 Copy Citation Text show less
    References

    [1] L. P. Ghislain, V. B. Elings, K. B. Crozier et al.. Near-field photolithography with a solid immersion lens[J]. Appl. Phys. Lett., 1999, 74(4): 501~503

    [2] T. D. Milster, J. S. Jo, K. Hirota. Roles of propagating and evanescent waves in solid immersion system[J]. Appl. Opt., 1999, 38(23): 5046~5057

    [3] R. J. Blaikie, S. J. McNab. Evanescent interferometric lithography[J]. Appl. Opt., 2001, 40(10): 1692~1698

    [4] W. Srituravanich, N. Fang, C. Sun et al.. Plasmonic nanolithography[J]. Nano. Lett., 2004, 4(6): 1085~1088

    [5] D. B. Shao, S. C. Chen. Numerical simulation of surface-plasmon assisted nanolithography[J]. Opt. Express, 2005, 13(18): 6964~6973

    [6] X. W. Guo, J. L. Du, Y. K. Guo et al.. Large-area surface plasmon polariton interference lithography[J]. Opt. Lett., 2006, 31(17): 2613~2615

    [7] J. Q. Wang, H. M. Liang, X. Y. Niu et al.. Enhancing exposure depth for surface-plasmon polaritons interference nanolithography by waveguide modulation[J]. J. Appl. Phys., 2010, 108(1): 014308

    [8] X. Y. Niu, Y. M. Qi, J. Q. Wang et al.. Approach of enhancing exposure depth for evanescent wave interference lithography[J]. Microelectron. Engng., 2010, 87(5-8): 1168~1171

    [9] X. W. Guo, J. L. Du, X. G. Luo et al.. Surface-plasmon polariton interference nanolithography based on end-fire coupling[J]. Microelectron. Engng., 2007, 84(5-8): 1037~1040

    [10] F. Liang, J. L. Du, X. W. Guo et al.. The theoretic analysis of maskless surface plasmon resonant interference lithography by prism coupling[J]. Chin. Phys. B, 2008, 17(7): 2499~2503

    [11] Jin Fengze, Fang Liang, Zhang Zhiyou et al.. Photonic crystal fabrication based on surface plasmon polaritons interference nanolitongraphy[J]. Acta Optica Sinica, 2009, 29(4): 1075~1078

    [12] Zhao Chengqiang, Xu Wendong, Hong Xiaogang et al.. Probe inducing surface plasmon resonance nanolithographic system[J]. Acta Optica Sinica, 2009, 29(2): 473~477

    [13] Hong Xiaogang, Xu Wengdong, Li Xiaogang et al.. Numerical simulation of probe induced surface plasmon resonance coupling nanolithography[J]. Acta Physica Sinica, 2008, 57(10): 6643~6648

    [14] M. Y. He, Z. Y. Zhang, S. Shi et al.. A practical nanofabrication method: surface plasmon polaritons interference lithography based on backside-exposure technique[J]. Opt. Express, 2010, 18(15): 15975~15980

    [15] I. Pockrand. Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings[J]. Surf. Sci., 1978, 72(3): 577~588

    CLP Journals

    [1] Yang Zheng, Zhang Zhiyou, Li Shuhong, Gao Fuhua, Du Jinglei. Exposure Developing Simulation Study of Single-Mode-Resonance Interference Lithography[J]. Acta Optica Sinica, 2013, 33(5): 505001

    [2] Rong Lin, Wenchao Qian, Yunpeng Shang, Shouyu Wang, Cheng Liu, Weiying Qian, Yan Kong. Dual-Channel All-Optical Switch Based on Plasmonic Demultiplexer Structure[J]. Laser & Optoelectronics Progress, 2018, 55(2): 022401

    Xiao Xiao, Zhang Zhiyou, He Mingyang, Xiao Zhigang, Xu Defu. Optimized Design of Silver Superlens for the Surface Plasmon Polaritons Interference Lithography Based on Backside-Exposure Technique[J]. Acta Optica Sinica, 2011, 31(12): 1222007
    Download Citation