• Journal of Infrared and Millimeter Waves
  • Vol. 42, Issue 4, 450 (2023)
An-Tian DU1、2, Chun-Fang CAO2, Shi-Xian HAN2、3, Hai-Long WANG1、*, and Qian GONG2、3、**
Author Affiliations
  • 1School of Physics and Physical Engineering,Shandong Provincial Key Laboratory of Laser Polarization and Information Technology,Qufu Normal University,Qufu273165,China
  • 2Key Laboratory of Terahertz Solid State Technology,Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences,Shanghai 200050,China
  • 3Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2023.04.004 Cite this Article
    An-Tian DU, Chun-Fang CAO, Shi-Xian HAN, Hai-Long WANG, Qian GONG. Effect of Be doping in active regions on the performance of 1.3 μm InAs quantum dot lasers[J]. Journal of Infrared and Millimeter Waves, 2023, 42(4): 450 Copy Citation Text show less
    References

    [1] Z Wang, W Qi, Q Feng et al. InAs/GaAs quantum dot single-section mode-locked lasers directly grown on Si (001) with optical self-injection feedback. Optics Express, 29, 674-683(2020).

    [2] A Y Liu, S Srinivasan, J Norman et al. Quantum dot lasers for silicon photonics [Invited]. Photonics Research, 3, 050000B1(2015).

    [3] J Yang, Z Liu, P Jurczak et al. All-MBE grown InAs/GaAs quantum dot lasers with thin Ge buffer layer on Si substrates. Journal of Physics D Applied Physics, 54, 035103(2020).

    [4] D Jung, J C Norman, M J Kennedy et al. High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si. Applied Physics Letters, 111, 122107(2017).

    [5] Y Yuan, X B Su, C A Yang et al. Molecular beam epitaxial growth of InAs quantum dots on GaAs for high characteristics temperature lasers. Journal of Infrared and Millimeter Waves, 39, 667(2020).

    [6] T Kageyama, K Nishi, M Yamaguchi et al. Extremely High Temperature (220°C) Continuous-Wave Operation of 1300-nm-range Quantum-Dot Lasers(2011).

    [7] N Ruiz-Marin, D F Reyes, L Stanojevic et al. Effect of the AlAs capping layer thickness on the structure of InAs/GaAs QD. Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials, 573(2022).

    [8] L Qin, B Xu, X S Xu. Enhancement of excited-state emission of InAs/GaAs quantum dots with large-period photonic crystal. Journal of Infrared and Millimeter Waves, 38, 559-565(2019).

    [9] Y Wan, D Inoue, D Jung et al. Directly modulated quantum dot lasers on silicon with a milliampere threshold and high temperature stability. Photonics Research, 6, 776(2018).

    [10] R R Alexander, H Agarwal, K M Groom et al. Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers. IEEE Journal of Quantum Electronics, 43, 1129-1139(2007).

    [11] W Qi, J Zhang, J H Wang et al. Phosphorus-free 151 μm InAs quantum-dot microdisk lasers on metamorphic InGaAs/SOI platform. Optics Letters, 45, 2042-2045(2020).

    [12] Z Mi, P Bhattacharya, J Yang et al. Room-temperature self-organised In0.5Ga0.5As quantum dot laser on silicon. Electronics Letters, 41, 742-744(2005).

    [13] S Chen, S Chen, W Li et al. Electrically pumped continuous-wave III-V quantum dot lasers on silicon. Nature Photonics, 10, 307-311(2016).

    [14] S K Ray, T L Choi, K M Groom et al. High-Power 1.3-μm Quantum-Dot Superluminescent Light-Emitting Diode Grown by Molecular Beam Epitaxy. Photonics Technology Letters IEEE, 19, 109-111(2007).

    [15] K Mukai, N Ohtsuka, M Sugawara et al. Self-Formed In0.5Ga0.5As Quantum Dots on GaAs Substrates Emitting at 1.3μm. Japanese Journal of Applied Physics, 33, L1710-L1712(1994).

    [16] D Stephan, J Bhattacharyya, Y H Huo et al. Inter-sublevel dynamics in single InAs/GaAs quantum dots induced by strong terahertz excitation. Applied Physics Letters, 108, 082107.1-082107.4(2016).

    [17] Q Gong, R Notzel, G J Hamhuis et al. Leveling and rebuilding: An approach to improve the uniformity of (In,Ga)As quantum dots. Applied Physics Letters, 81, 1887-1889(2002).

    [18] P B Joyce, T J Krzyzewski, G R Bell et al. Effect of growth rate on the size, composition, and optical properties of InAs/GaAs quantum dots grown by molecular-beam epitaxy. Physical Review B Condensed Matter, 62, 10891-10895(2000).

    [19] T Wang, A Lee, F Tutu et al. The effect of growth temperature of GaAs nucleation layer on InAs/GaAs quantum dots monolithically grown on Ge substrates. Applied Physics Letters, 100, 4600(2012).

    [20] A Salhi, L Fortunato, L Martiradonna et al. Enhanced modal gain of multilayer InAs/InGaAs/GaAs quantum dot lasers emitting at 1300 nm. Journal of Applied Physics, 100, 1915(2006).

    [21] Q Cao, S F Yoon, C Y Liu et al. Effects of rapid thermal annealing on optical properties of p-doped and undoped InAs/InGaAs dots-in-a-well structures. Journal of Applied Physics, 104, 20(2008).

    [22] N Kumagai, K Watanabe, Y Nakata et al. Optical properties of p-type modulation-doped InAs quantum dot structures grown by molecular beam epitaxy. Journal of Crystal Growth, 301–302, 805-808(2007).

    [23] Q Li, X Wang, Z Zhang et al. Development of Modulation p-Doped 1310 nm InAs/GaAs Quantum Dot Laser Materials and Ultrashort Cavity Fabry-Perot and Distributed-Feedback Laser Diodes. ACS PHOTONICS, 2017: acsphotonics, 5, 7b01355.

    [24] L Yue, Q Gong, C Cao et al. High-performance InAs/GaAs quantum dot laser with dot layers grown at 425℃. Chinese Optics Letters, 11, 39-42(2013).

    [25] S Fathpour, Z Mi, P Bhattacharya et al. The role of Auger recombination in the temperature-dependent output characteristics (T0=∞)of p-doped 1.3 μm quantum dot lasers. Applied Physics Letters, 85, 5164-5166(2004).

    An-Tian DU, Chun-Fang CAO, Shi-Xian HAN, Hai-Long WANG, Qian GONG. Effect of Be doping in active regions on the performance of 1.3 μm InAs quantum dot lasers[J]. Journal of Infrared and Millimeter Waves, 2023, 42(4): 450
    Download Citation