• Laser & Optoelectronics Progress
  • Vol. 56, Issue 1, 011403 (2019)
Qing Li1、2, Guorui Zhao2, Xingchen Yan2, Wenyou Ma2, Hongya Yu1, and Min Liu2、*
Author Affiliations
  • 1 School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
  • 2 National Engineering Laboratory for Modern Materials Surface Engineering Technology, Key Laboratory of Guangdong for Modern Surface Engineering Technology, Guangdong Institute of New Materials, Guangzhou, Guangdong 510651, China
  • show less
    DOI: 10.3788/LOP56.011403 Cite this Article Set citation alerts
    Qing Li, Guorui Zhao, Xingchen Yan, Wenyou Ma, Hongya Yu, Min Liu. Mechanical Properties of Porous Ti-6Al-4V Titanium Alloys Fabricated by Selective Laser Melting[J]. Laser & Optoelectronics Progress, 2019, 56(1): 011403 Copy Citation Text show less
    References

    [1] Thijs L, Verhaeghe F, Craeghs T et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V[J]. Acta Materialia, 58, 3303-3312(2010). http://www.sciencedirect.com/science/article/pii/S135964541000090X

    [2] Vandenbroucke B, Kruth J. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts[J]. Rapid Prototyping Journal, 13, 196-203(2007). http://www.emeraldinsight.com/doi/full/10.1108/13552540710776142

    [3] Chen D N, Liu T T, Liao W H et al. Temperature field during selective laser melting of metal powder under different scanning strategies[J]. Chinese Journal of Lasers, 43, 0403003(2016).

    [4] Cox S C, Jamshidi P, Eisenstein N M et al. Adding functionality with additive manufacturing: fabrication of titanium-based antibiotic eluting implants[J]. Materials Science and Engineering: C, 64, 407-415(2016). http://www.ncbi.nlm.nih.gov/pubmed/27127071

    [5] Facchini L, Magalini E, Robotti P et al. Ductility of a Ti-6Al-4V alloy produced by selective laser melting of prealloyed powders[J]. Rapid Prototyping Journal, 16, 450-459(2010). http://onlinelibrary.wiley.com/resolve/reference/XREF?id=10.1108/13552541011083371

    [6] Pattanayak D K, Fukuda A, Matsushita T et al. Bioactive Ti metal analogous to human cancellous bone: fabrication by selective laser melting and chemical treatments[J]. Acta Biomaterialia, 7, 1398-1406(2011). http://www.ncbi.nlm.nih.gov/pubmed/20883832

    [7] Lin H, Yang Y Q, Zhang G Q et al. Tribological performance of medical CoCrMo alloy fabricated by selective laser melting[J]. Acta Optica Sinica, 36, 1114003(2016).

    [8] Goharian A, Abdullah M R. Bioinert metals (stainless steel, titanium, cobalt chromium)[M]. Amsterdam: Elsevier, 115-142(2017).

    [9] Heinl P, Müller L, Körner C et al. Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting[J]. Acta Biomaterialia, 4, 1536-1544(2008). http://www.ncbi.nlm.nih.gov/pubmed/18467197

    [10] Bandyopadhyay A, Espana F, Balla V K et al. Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants[J]. Acta Biomaterialia, 6, 1640-1648(2010).

    [11] Murr L E, Amato K N, Li S J et al. Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting[J]. Journal of the Mechanical Behavior of Biomedical Materials, 4, 1396-1411(2011). http://www.ncbi.nlm.nih.gov/pubmed/21783150

    [12] Wang X J, Li Y C, Hodgson P D et al. Nano- and macro-scale characterisation of the mechanical properties of bovine bone[J]. Materials Forum, 31, 156-159(2007).

    [13] Li Y H, Yang C, Zhao H D et al. New developments of Ti-based alloys for biomedical applications[J]. Materials, 7, 1709-1800(2014). http://www.ncbi.nlm.nih.gov/pubmed/28788539

    [14] Wolff J. The law of bone remodeling[M]. Heidelberg: Springer(1987).

    [15] Li J P. Habibovic P, van den Doel M, et al. Bone ingrowth in porous titanium implants produced by 3D fiber deposition[J]. Biomaterials, 28, 2810-2820(2007).

    [16] Otsuki B, Takemoto M, Fujibayashi S et al. Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three-dimensional micro-CT based structural analyses of porous bioactive titanium implants[J]. Biomaterials, 27, 5892-5900(2006). http://old.med.wanfangdata.com.cn/viewHTMLEn/PeriodicalPaper_JJ0210560625.aspx

    [17] Xiu P, Jia Z J, Lv J et al. Tailored surface treatment of 3D printed porous Ti6Al4V by microarc oxidation for enhanced osseointegration via optimized bone in-growth patterns and interlocked Bone/Implant interface[J]. ACS Applied Materials & Interfaces, 8, 17964-17975(2016).

    [18] Gibson L J, Ashby M F[M]. The structure of cellular solids, 15-51.

    [19] Ahmadi S M, Hedayati R. Ashok Kumar Jain R K, et al. Effects of laser processing parameters on the mechanical properties, topology, and microstructure of additively manufactured porous metallic biomaterials: a vector-based approach[J]. Materials & Design, 134, 234-243(2017).

    [20] Taniguchi N, Fujibayashi S, Takemoto M et al. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: an in vivo experiment[J]. Materials Science and Engineering: C, 59, 690-701(2016). http://europepmc.org/abstract/MED/26652423

    [21] Sun J F, Yang Y Q, Wang D. Mechanical properties of Ti-6Al-4V octahedral porous material unit formed by selective laser melting[J]. Advances in Mechanical Engineering, 4, 427386(2012).

    [22] Choy S Y, Sun C N, Leong K F et al. Compressive properties of Ti-6Al-4V lattice structures fabricated by selective laser melting: design, orientation and density[J]. Additive Manufacturing, 16, 213-224(2017).

    [23] Ajdari A, Jahromi B H, Papadopoulos J et al. Hierarchical honeycombs with tailorable properties[J]. International Journal of Solids and Structures, 49, 1413-1419(2012). http://www.sciencedirect.com/science/article/pii/S0020768312000777

    [24] Li F P, Li J S, Kou H C et al. Porous Ti6Al4V alloys with enhanced normalized fatigue strength for biomedical applications[J]. Materials Science and Engineering: C, 60, 485-488(2016).

    [25] Ryan G E, Pandit A S, Apatsidis D P. Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique[J]. Biomaterials, 29, 3625-3635(2008). http://www.sciencedirect.com/science/article/pii/S0142961208003748

    [26] Ashby M F, Evans T, Fleck N A et al. Metal foams: a design guide[M]. Amsterdam: Elsevier(2000).

    [27] Hedayati R, Ahmadi S M, Lietaert K et al. Isolated and modulated effects of topology and material type on the mechanical properties of additively manufactured porous biomaterials[J]. Journal of the Mechanical Behavior of Biomedical Materials, 79, 254-263(2018). http://www.ncbi.nlm.nih.gov/pubmed/29335192

    [28] Chen S Y, Huang J C, Pan C T et al. Microstructure and mechanical properties of open-cell porous Ti-6Al-4V fabricated by selective laser melting[J]. Journal of Alloys and Compounds, 713, 248-254(2017). http://www.sciencedirect.com/science/article/pii/S0925838817313890

    [29] Yan C Z, Hao L, Hussein A et al. Evaluation of light-weight AlSi10Mg periodic cellular lattice structures fabricated via direct metal laser sintering[J]. Journal of Materials Processing Technology, 214, 856-864(2014).

    [30] Ghouse S. Babu S, van Arkel R J, et al. The influence of laser parameters and scanning strategies on the mechanical properties of a stochastic porous material[J]. Materials & Design, 131, 498-508(2017).

    [31] Zhang B, Li D C, Cao Y et al. Error analysis in formation direction of selective laser melting based on powder melting[J]. Laser & Optoelectronics Progress, 54, 011406(2017).

    [32] Cheng X Y, Li S J, Murr L E et al. Compression deformation behavior of Ti-6Al-4V alloy with cellular structures fabricated by electron beam melting[J]. Journal of the Mechanical Behavior of Biomedical Materials, 16, 153-162(2012). http://www.sciencedirect.com/science/article/pii/S1751616112002639

    [33] Wauthle R, Vrancken B, Beynaerts B et al. Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures[J]. Additive Manufacturing, 5, 77-84(2015).

    [34] Ahmadi S M. Ashok Kumar Jain R K, Zadpoor A A, et al. Effects of heat treatment on microstructure and mechanical behaviour of additive manufactured porous Ti6Al4V[J]. IOP Conference Series: Materials Science and Engineering, 293, 012009(2017).

    [35] Zhao Y Q, Chen Y N, Chen X M et al[M]. Phase transformation and heat treatment of titanium alloys(2012).

    [36] Alabort E, Putman D, Reed R C. Superplasticity in Ti-6Al-4V: characterisation, modelling and applications[J]. Acta Materialia, 95, 428-442(2015).

    [37] Gibson L J, Ashby M F. The mechanics of three-dimensional cellular materials[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 382, 43-59(1982). http://www.jstor.org/stable/2397268

    [38] Zysset P K, Guo X E, Hoffler C E et al. Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur[J]. Journal of Biomechanics, 32, 1005-1012(1999). http://rheumatology.oxfordjournals.org/external-ref?access_num=10476838&link_type=MED

    [39] Gibson L J. Mechanical behavior of metallic foams[J]. Annual Review of Materials Science, 30, 191-227(2000). http://www.annualreviews.org/doi/pdf/10.1146/annurev.matsci.30.1.191

    [40] Kadkhodapour J, Montazerian H, Darabi A C et al. The relationships between deformation mechanisms and mechanical properties of additively manufactured porous biomaterials[J]. Journal of the Mechanical Behavior of Biomedical Materials, 70, 28-42(2017). http://www.ncbi.nlm.nih.gov/pubmed/27693217

    [41] Qiu C L, Yue S. Adkins N J E, et al. Influence of processing conditions on strut structure and compressive properties of cellular lattice structures fabricated by selective laser melting[J]. Materials Science and Engineering: A, 628, 188-197(2015).

    [42] Ashby M F. The properties of foams and lattices[J]. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences, 364, 15-30(2006). http://www.ncbi.nlm.nih.gov/pubmed/18272451

    [43] Choy S Y, Sun C-N, Leong K F et al. Compressive properties of functionally graded lattice structures manufactured by selective laser melting[J]. Materials & Design, 131, 112-120(2017). http://www.sciencedirect.com/science/article/pii/S0264127517305890

    Qing Li, Guorui Zhao, Xingchen Yan, Wenyou Ma, Hongya Yu, Min Liu. Mechanical Properties of Porous Ti-6Al-4V Titanium Alloys Fabricated by Selective Laser Melting[J]. Laser & Optoelectronics Progress, 2019, 56(1): 011403
    Download Citation