• Laser & Optoelectronics Progress
  • Vol. 59, Issue 1, 0101001 (2022)
Xinqiang Wang1、2, Qiuyu Liang1、2, Song Ye1、2, Fangyuan Wang1、2, Shu Li1、2, Shan Yin1、2, and Yongying Gan1、2、*
Author Affiliations
  • 1School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin , Guangxi 541004, China
  • 2Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin , Guangxi 541004, China
  • show less
    DOI: 10.3788/LOP202259.0101001 Cite this Article Set citation alerts
    Xinqiang Wang, Qiuyu Liang, Song Ye, Fangyuan Wang, Shu Li, Shan Yin, Yongying Gan. Atmospheric Carbon Dioxide Inversion and Surface Reflectance Analysis Based on Ratio Method[J]. Laser & Optoelectronics Progress, 2022, 59(1): 0101001 Copy Citation Text show less
    Transmittance spectra of each gas. (a) Transmittance spectra of CO2, N2O, O3, and H2O; (b) local magnification
    Fig. 1. Transmittance spectra of each gas. (a) Transmittance spectra of CO2, N2O, O3, and H2O; (b) local magnification
    Simulated radiance spectrum at the absorption zone of 1.58-μm CO2
    Fig. 2. Simulated radiance spectrum at the absorption zone of 1.58-μm CO2
    Radiance spectra at the absorption zone of 1.58-μm CO2 under different aerosols
    Fig. 3. Radiance spectra at the absorption zone of 1.58-μm CO2 under different aerosols
    Radiance spectra at the absorption zone of 1.58-μm CO2 corresponding to surface reflectance 0.1-0.9 respectively
    Fig. 4. Radiance spectra at the absorption zone of 1.58-μm CO2 corresponding to surface reflectance 0.1-0.9 respectively
    Diagram of ratio method
    Fig. 5. Diagram of ratio method
    Fitting results between spectral radiance ratios and carbon dioxide concentration near 6310 cm-1 absorption peaks at different surface reflectivity. (a) 0.05; (b) 0.16; (c) 0.3; (d) 0.5; (e) 0.8
    Fig. 6. Fitting results between spectral radiance ratios and carbon dioxide concentration near 6310 cm-1 absorption peaks at different surface reflectivity. (a) 0.05; (b) 0.16; (c) 0.3; (d) 0.5; (e) 0.8
    Measured transmittance spectra of different CO2 concentrations
    Fig. 7. Measured transmittance spectra of different CO2 concentrations
    Linear fitting result between transmittance spectral ratio of measured data and carbon dioxide concentration
    Fig. 8. Linear fitting result between transmittance spectral ratio of measured data and carbon dioxide concentration
    ReflectivityDifferential ratio /%
    0.1-8.03
    0.2-6.15
    0.3-4.19
    0.4-2.15
    0.50
    0.62.25
    0.74.61
    0.87.09
    0.99.71
    Table 1. Difference ratio of different reflectivity
    Wavenumber /cm-1ModelRAverage error /%
    6310Y=-5693.47397×X+5628.92276-0.9961.15
    6323Y=-3212.74973×X+2838.50017-0.9831.47
    6334Y=-2692.12499×X+2131.76557-0.9851.81
    6354Y=-2211.6141×X+1773.44557-0.9401.64
    Table 2. Average fitting results of surface reflectivity with different wavenumbers
    Atmospheric modelModelRAverage error /%
    Midlatitude summerY=-5753.547×X+5747.306-0.9921.43
    1976 US standardY=-5558.7×X+5533.371-0.9941.22
    Rural,visibility is 5 kmY=-5693.474×X+5628.923-0.9961.15
    Navy maritimeY=-5703.95×X+5638.444-0.9791.21
    Urban,visibility is 5 kmY=-5749.289×X+5686.76-0.9901.32
    Table 3. Mean fitting results of different atmospheric models and aerosols
    ParameterValue
    Spectral resolution /cm-10.27
    Spectral range /cm-16 325-6 360
    Signal to noise ratio300
    Detection of pixels320×25,630 μm×30 μm
    Table 4. Technical index of space heterodyne spectrometer
    Xinqiang Wang, Qiuyu Liang, Song Ye, Fangyuan Wang, Shu Li, Shan Yin, Yongying Gan. Atmospheric Carbon Dioxide Inversion and Surface Reflectance Analysis Based on Ratio Method[J]. Laser & Optoelectronics Progress, 2022, 59(1): 0101001
    Download Citation