• Acta Optica Sinica
  • Vol. 37, Issue 2, 214001 (2017)
Zhang Tingzhong1、2、*, Zhang Chong1, Li Jin2, Zhang Hongchao1, and Lu Jian1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/aos201737.0214001 Cite this Article Set citation alerts
    Zhang Tingzhong, Zhang Chong, Li Jin, Zhang Hongchao, Lu Jian. Formation Mechanism of Recast Layer in Millisecond Laser Drilling of Ti6Al4V Alloys[J]. Acta Optica Sinica, 2017, 37(2): 214001 Copy Citation Text show less
    References

    [2] Zhao Shiqiang, Li Ling. Numerical investigation of phase change during thermal ablation of gold films induced by femtosecond laser[J]. Acta Optica Sinica, 2015, 35(12): 1214001.

    [3] Leigh S, Sezer K, Li L, et al. Statistical analysis of recast formation in laser drilled acute blind holes in CMSX-4 nickel superalloy[J]. International Journal of Advanced Manufacturing Technology, 2009, 43(11-12): 1094-1105.

    [4] Zhang T Z, Jia Z C, Cui H C, et al. Analysis of melt ejection during long pulsed laser drilling[J]. Chinese Physics B, 2016, 25(5): 054206.

    [5] Voisey K T, Klocker T, Clyne T W. Measurement of melt ejection velocities during laser drilling of steel, using a novel droplet stream interception technique[J]. Acta Materialia, 2002, 50(17): 4219-4230.

    [6] Low D K Y, Li L, Byrd P J. Spatter prevention during the laser drilling of selected aerospace materials[J]. Journal of Materials Processing Technology, 2003, 139(1-3): 71-76.

    [7] Duan W Q, Wang K D, Dong X, et al. Experimental characterizations of burr deposition in Nd∶YAG laser drilling: A parametric study[J]. International Journal of Advanced Manufacturing Technology, 2015, 76(9-12): 1529-1542.

    [8] Yilbas B S, Karatas C, Uslan, et al. CO2 laser gas assisted nitriding of Ti-6Al-4V alloy[J]. Applied Surface Science, 2006, 252(24): 8557-8564.

    [9] Yilbas B S, Sami M. Liquid ejection and possible nucleate boiling mechanisms in relation to the laser drilling process[J]. Journal of Physics D-Applied Physics, 1997, 30(14): 1996-2005.

    [10] Yang C J, Mei X S, Wang W J, et al. Recast layer removal using ultrafast laser in titanium alloy[J]. International Journal of Advanced Manufacturing Technology, 2013, 68(9-12): 2321-2327.

    [11] Duan W Q, Dong X, Wang K D, et al. Effect of temporally modulated pulse on reducing recast layer in laser drilling[J]. The International Journal of Advacned Manufacturing Technology, 2016, 87(5): 1641-1652.

    [12] Bandyopadhyay S, Gokhale H, Sundar J K S, et al. A statistical approach to determine process parameter impact in Nd∶YAG laser drilling of IN718 and Ti-6Al-4V sheets[J]. Optics and Lasers in Engineering, 2005, 43(2): 163-182.

    [13] Song Linsen, Shi Guoquan, Li Zhanguo. Simulation of laser drilling temperature field by using ANSYS[J]. Acta Armamentarii, 2006, 27(5): 879-882.

    [14] Chu Qingchen, Yu Gang, Lu Guoquan, et al. Two-dimensional numerical investigation for the effects of laser process parameters on hole type during laser drilling[J]. Chinese J Lasers, 2011, 38(6): 0603001.

    [15] Zhang Y W, Faghri A. Vaporization, melting and heat conduction in the laser drilling process[J]. International Journal of Heat and Mass Transfer, 1999, 42(10): 1775-1790.

    [16] Hirano K, Fabbro R. Experimental investigation of hydrodynamics of melt layer during laser cutting of steel[J]. Journal of Physics D-Applied Physics, 2011, 44(10): 105502.

    [17] Ki H, Mohanty P S, Mazumder J. Modelling of high-density laser-material interaction using fast level set method[J]. Journal of Physics D-Applied Physics, 2001, 34(3): 364-372.

    [18] Otto A, Koch H, Leitz K H, et al. Numerical simulations-A versatile approach for better understanding dynamics in laser material processing[C]. Physics Procedia, 2011, 12: 11-20.

    [19] Pang S Y, Chen X, Zhou J X, et al. 3D transient multiphase model for keyhole, vapor plume, and weld pool dynamics in laser welding including the ambient pressure effect[J]. Optics and Lasers in Engineering, 2015, 74: 47-58.

    [20] Pang S Y, Hirano K, Fabbro R, et al. Explanation of penetration depth variation during laser welding under variable ambient pressure[J]. Journal of Laser Applications, 2015, 27(2): 022007.

    [21] Fabbro R, Hirano K, Pang S Y. Analysis of the physical processes occurring during deep penetration laser welding under reduced pressure[J]. Journal of Laser Applications, 2016, 28(2): 022427.

    [22] Courtois M, Carin M, Masson P L, et al. A new approach to compute multi-reflections of laser beam in a keyhole for heat transfer and fluid flow modelling in laser welding[J]. Journal of Physics D-Applied Physics, 2013, 46(50): 505305.

    [23] Riveiro A, Quintero F, Lusquios F, et al. Study of melt flow dynamics and influence on quality for CO2 laser fusion cutting[J]. Journal of Physics D-Applied Physics, 2011, 44(13): 135501.

    [24] Wei P S, Wu J H, Chao T C, et al. Keyhole collapse during high intensity beam drilling[J]. International Journal of Heat and Mass Transfer, 2014, 79: 300-308.

    [25] Bandyopadhyay S, Sundar J K S, Sundararajan G, et al. Geometrical features and metallurgical characteristics of Nd∶YAG laser drilled holes in thick IN718 and Ti-6Al-4V sheets[J]. Journal of Materials Processing Technology, 2002, 127(1): 83-95.

    Zhang Tingzhong, Zhang Chong, Li Jin, Zhang Hongchao, Lu Jian. Formation Mechanism of Recast Layer in Millisecond Laser Drilling of Ti6Al4V Alloys[J]. Acta Optica Sinica, 2017, 37(2): 214001
    Download Citation