• Laser & Optoelectronics Progress
  • Vol. 56, Issue 14, 141009 (2019)
Xunsheng Ji and Hao Wang*
Author Affiliations
  • School of Internet of Things Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
  • show less
    DOI: 10.3788/LOP56.141009 Cite this Article Set citation alerts
    Xunsheng Ji, Hao Wang. Head Detection Method Based on Optimized Deformable Regional Fully Convolutional Neutral Networks[J]. Laser & Optoelectronics Progress, 2019, 56(14): 141009 Copy Citation Text show less
    Schematic of optimized regional fully convolutional neural network model
    Fig. 1. Schematic of optimized regional fully convolutional neural network model
    Connection modes of different convolution layers. (a) Traditional VGG convolution connection; (b) convolutional connection of 50-layer residual network
    Fig. 2. Connection modes of different convolution layers. (a) Traditional VGG convolution connection; (b) convolutional connection of 50-layer residual network
    Schematics of deformable convolution with different migration modes. (a) General convolution; (b) deformable convolution; (c) convolutional ideal arrangement; (d) convolutional rotation transformation
    Fig. 3. Schematics of deformable convolution with different migration modes. (a) General convolution; (b) deformable convolution; (c) convolutional ideal arrangement; (d) convolutional rotation transformation
    Flow chart of deformable convolution
    Fig. 4. Flow chart of deformable convolution
    Schematic of RPN network structure in model
    Fig. 5. Schematic of RPN network structure in model
    Pooling operation of ROI
    Fig. 6. Pooling operation of ROI
    Pooling of deformable position-sensitive ROI
    Fig. 7. Pooling of deformable position-sensitive ROI
    Pooling of deformable position-sensitive ROI in the proposed method
    Fig. 8. Pooling of deformable position-sensitive ROI in the proposed method
    Small scale measurement in dark light
    Fig. 9. Small scale measurement in dark light
    Test under dark-light and background interference
    Fig. 10. Test under dark-light and background interference
    Multi-object boundary box overlapping test
    Fig. 11. Multi-object boundary box overlapping test
    Multi-object and multi-scale test
    Fig. 12. Multi-object and multi-scale test
    Small-scale occlusion test
    Fig. 13. Small-scale occlusion test
    Multi-object occlusion test
    Fig. 14. Multi-object occlusion test
    Two-object occlusion test
    Fig. 15. Two-object occlusion test
    Small-scale fuzzy object test
    Fig. 16. Small-scale fuzzy object test
    Multi-object frontal head test
    Fig. 17. Multi-object frontal head test
    Multi-object occlusion side head test
    Fig. 18. Multi-object occlusion side head test
    MethodAnchorS-NMSDeformable convIterationsTest speed /(frame·s-1)mAP /%
    DPM Face
    R-CNN
    -----37.4
    67.1
    Local-RCNN-----72.7
    Faster RCNN(ZF)---5000017.2473.48
    Faster RCNN(ZF)--5000017.2474.50
    Faster RCNN(VGG16)---500006.3679.17
    Faster RCNN(VGG16)--500006.3680.02
    R-FCN(ResNet-50)---300007.2981.00
    R-FCN(ResNet-50)--300007.2981.12
    R-FCN(ResNet-50)--300007.2981.96
    R-FCN(ResNet-50)--400007.2982.00
    R-FCN(ResNet-50)-400007.2982.41
    R-FCN(ResNet-50)-300007.2982.76
    R-FCN(ResNet-50)-√+300006.9583.24
    R-FCN(ResNet-50)*-300007.0482.83
    R-FCN(ResNet-101)---300008.5084.49
    R-FCN(ResNet-152)---300008.3284.32
    Note: “*”: position sensitive ROI align; “+” : deformable position sensitive ROI; “√”: corresponding network added.
    Table 1. mAP and test speed of different models on HollywoodHeads
    Xunsheng Ji, Hao Wang. Head Detection Method Based on Optimized Deformable Regional Fully Convolutional Neutral Networks[J]. Laser & Optoelectronics Progress, 2019, 56(14): 141009
    Download Citation