• Laser & Optoelectronics Progress
  • Vol. 54, Issue 8, 80003 (2017)
Song Xiaoqing*, Wei Youcai, Zhao Zixu, and Wang Muyu
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop54.080003 Cite this Article Set citation alerts
    Song Xiaoqing, Wei Youcai, Zhao Zixu, Wang Muyu. Research Progress on Hardware Pre-Equalization Technology for High-Speed Visible Light Communication[J]. Laser & Optoelectronics Progress, 2017, 54(8): 80003 Copy Citation Text show less
    References

    [1] Haigh P A, Ghassemlooy Z, Rajbhandari S, et al. Visible light communications using organic light emitting diodes[J]. IEEE Communications Magazine, 2013, 51(8): 148-154.

    [2] Thai P Q. Real-time 138-kb/s transmission using OLED with 7-kHz modulation bandwidth[J]. IEEE Photonics Technology Letters, 2015, 27(24): 2571-2574.

    [3] Thai P Q, Thanh N T, Shigeru S, et al. 127.5 kbps transmission using OLED with 7 kHz 3 dB modulation bandwidth in visible light communication system[C]. International Conference on Advanced Technologies for Communications, 2015: 15729725.

    [4] Song Xiaoqing, Zhao Zixu, Chen Kewei, et al. Visible light communication: Potential applications and challenges[J]. Laser & Optoelectronics Progress, 2015, 52(8): 080004.

    [5] Chen Quanrun, Zhang Tao, Zheng Weibo, et al. Present research situation and application prospects of VLC based on white LED[J]. Semiconductor Optoelectronics, 2016, 37(4): 455-460.

    [6] Yeh C H, Liu Y L, Chow C W. Demonstration of 76 Mbit·s-1 real-time phosphor-LED visible light wireless system[C]. Opto Electronics and Communication Conference and Australian Conference on Optical Fibre Technology, 2014: 14579865.

    [7] Wang Y G, Tao L, Huang X X, et al. 8-Gb/s RGBY LED based WDM VLC system employing high-order CAP modulation and hybrid post equalizer[J]. IEEE Photonics Journal, 2015, 7(6): 15568083.

    [8] Tsonev D, Chun H, Rajbhandari S, et al. A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED[J]. IEEE Photonics Technology Letters, 2014, 26(7): 637-640.

    [9] Retamal J R D, Oubei H M, Janjua B, et al. 4-Gbit/s visible light communication link based on 16-QAM OFDM transmission over remote phosphor-film converted white light by using blue laser diode[J]. Optics Express, 2015, 23(26): 33656-33666.

    [10] Wang Y Q, Huang X X, Zhang J W, et al. Enhanced performance of visible light communication employing 512-QAM N-SC-FDE and DD-LMS[J]. Optics Express, 2014, 22(13): 15328-15334.

    [11] Sung J Y, Chow C W, Yeh C H. Dimming-discrete-multi-tone (DMT) for simultaneous color control and high speed visible light communication[J]. Optics Express, 2014, 22(7): 7538-7543.

    [12] Wang Y G, Huang X X, Tao L, et al. 4.5-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization[J]. Optics Express, 2015, 23(10): 13626-13633.

    [13] Wu F M, Lin C T, Wei C C, et al. Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication[J]. IEEE Photonics Journal, 2013, 5(4): 13654821.

    [14] Jia Kejun, Hao Li, Yu Caihong. Modeling of multipath channel and performance analysis of MIMO-ACO-OFDM system for indoor visible light communication[J]. Acta Optica Sinica, 2016, 36(7): 0706005.

    [15] Chi Nan. LED visible light communication technologies[M]. Beijing: Tsinghua University Press, 2013: 77-84.

    [16] Minh H L, O′Brien D, Faulkner G, et al. High-speed visible light communications using multiple-resonant equalization[J]. IEEE Photonics Technology Letters, 2008, 20(14): 1243-1245.

    [17] Minh H L, O′Brien D, Faulkner G, et al. 80 Mbit·s-1 visible light communications using pre-equalized white LED[C]. 34th European Conference on Optical Communication, 2008: 10426619.

    [18] Fujimoto N, Mochizuki H. 477 Mbit·s-1 visible light transmission based on OOK-NRZ modulation using a single commercially available visible LED and a practical LED driver with a pre-emphasis circuit[C]. Optical Fiber Communication Conference and Exposition/National Fiber Optic Engineers Conference, 2013: 13581859.

    [19] Fujimoto N, Yamamoto S. The fastest visible light transmissions of 662 Mb/s by a blue LED, 600 Mb/s by a red LED, and 520 Mb/s by a green LED based on simple OOK-NRZ modulation of a commercially available RGB-type white LED using pre-emphasis and post-equalizing techniques[C]. European Conference on Optical Communication, 2014: 14768419.

    [20] Li H L, Chen X B, Guo J Q, et al. 200 Mb/s visible optical wireless transmission based on NRZ-OOK modulation of phosphorescent white LED and a pre-emphasis circuit[J]. Chinese Optics Letters, 2014, 12(10): 14768419.

    [21] Li H L, Chen X B, Guo J Q, et al. An analog modulator for 460 MB/S visible light data transmission based on OOK-NRS modulation[J]. IEEE Wireless Communications, 2015, 22(2): 68-73.

    [22] Li H L, Chen X B, Guo J Q, et al. A 550 Mbit·s-1 real-time visible light communication system based on phosphorescent white light LED for practical high-speed low-complexity application[J]. Optics Express, 2014, 22(22): 27203-27213.

    [23] Li H L, Zhang Y N, Chen X B, et al. High-speed phosphorescent white LED visible light communications without utilizing a blue filter[J]. Chinese Optics Letters, 2015, 13(8): 080605.

    [24] Yeh C H, Chow C W, Chen H Y, et al. Adaptive 84.44-190 Mbit·s-1 phosphor-LED wireless communication utilizing no blue filter at practical transmission distance[J]. Optics Express, 2014, 22(8): 9783-9788.

    [25] Huang X X, Shi J Y, Li J H, et al. 750 Mbit·s-1 visible light communications employing 64QAM-OFDM based on amplitude equalization circuit[C]. Optical Fiber Communication, 2015: Tu2G.1.

    [26] Chi Nan, Zhou Yingjun, Zhao Jiaqi, et al. High speed visible light communication based on hardware preequalization circuit[J]. Science & Technology Review, 2016, 34(16): 144-149.

    [27] Hu Shousong. Automatic control theory and application[M]. 4th ed. Beijing: Beijing Science Press, 2001.

    [28] Chi Nan, Lu Xingyu, Wang Can, et al. High speed visible light communication based on LED[J]. Chinese J Lasers, 2017, 44(3): 0300001.

    [29] Chen H D, Wu C H, Li H L, et al. Advances and prospects in visible light communications[J]. Journal of Semiconductors, 2016, 37(1): 011001.

    Song Xiaoqing, Wei Youcai, Zhao Zixu, Wang Muyu. Research Progress on Hardware Pre-Equalization Technology for High-Speed Visible Light Communication[J]. Laser & Optoelectronics Progress, 2017, 54(8): 80003
    Download Citation