• Laser & Optoelectronics Progress
  • Vol. 54, Issue 6, 60001 (2017)
Jiang Haowei*, Li Guangzhen, Liu Yian, Chen Yuping, and Chen Xianfeng
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop54.060001 Cite this Article Set citation alerts
    Jiang Haowei, Li Guangzhen, Liu Yian, Chen Yuping, Chen Xianfeng. Recent Advances in Cascading Electro-Optic Photonic Crystal[J]. Laser & Optoelectronics Progress, 2017, 54(6): 60001 Copy Citation Text show less
    References

    [1] Cotter D, Manning R J, Blow K J, et al. Nonlinear optics for high-speed digital information processing[J]. Science, 1999, 286(5444): 1523-1528.

    [2] Saruwatari M. All-optical signal processing for terabit/second optical transmission[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(6): 1363-1374.

    [3] Guarino A, Poberaj G, Rezzonico D, et al. Electro-optically tunable microring resonators in lithium niobate[J]. Nature Photonics, 2007, 1(7): 407-410.

    [4] Mhaouech I, Coda V, Montemezzani G, et al. Low drive voltage electro-optic Bragg deflector using a periodically poled lithium niobate planar waveguide[J]. Optics Letters, 2016, 41(18): 4174-4177.

    [5] Chang L, Li Y F, Volet N, et al. Thin film wavelength converters for photonic integrated circuits[J]. Optica, 2016, 3(5): 531-535.

    [6] Lin J T, Xu Y X, Ni J L, et al. Phase-matched second-harmonic generation in an on-chip LiNbO3 microresonator[J]. Physical Review Applied, 2016, 6(1): 014002.

    [7] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 1987, 58(20): 2059-2062.

    [8] John S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 1987, 58(23): 2486-2489.

    [9] Zhang Xinxin, She Weilong. Electrically controlled grating based on PPLN[J]. Acta Optica Sinica, 2015, 35(1): 0105001.

    [10] Lu Y Q, Wan Z L, Wang Q, et al. Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications[J]. Applied Physics Letters, 2000, 77(23): 3719-3721.

    [11] Shi L, Tian L H, Chen X F. Electro-optic chirality control in MgO∶PPLN[J]. Journal of Applied Physics, 2012, 112(7): 073103.

    [12] Zhang Y X, Chen Y P, Chen X F. Polarization-based all-optical logic controlled-NOT, XOR, and XNOR gates employing electro-optic effect in periodically poled lithium niobate[J]. Applied Physics Letters, 2011, 99(16): 161117.

    [13] Jiang H W, Chen Y P, Li G Z, et al. Optical half-adder and half-subtracter employing the Pockels effect[J]. Optics Express, 2015, 23(8): 9784-9789.

    [14] Li G Z, Chen Y P, Jiang H W, et al. Tunable temporal gap based on simultaneous fast and slow light in electro-optic photonic crystals[J]. Optics Express, 2015, 23(14): 18345-18350.

    [15] Li Peipei, Tang Haibo, She Weilong. Efficient electro-optical controlled difference-frequency conversion in quasi-periodic optical superlattice[J]. Acta Optica Sinica, 2012, 32(6): 0619004.

    [16] Kong Yan, Zhang Xiumei, Su Zhouping, et al. Intensity and polarization modulation on cascaded frequency doubling and electro-optic coupling in periodically poled lithium niobate[J]. Laser & Optoelectronics Progress, 2012, 49(10): 101901.

    [18] Zaghloul Y A, Zaghloul A R M. Complete all-optical processing polarization-based binary logic gates and optical processors[J]. Optics Express, 2006, 14(21): 9879-9895.

    [19] Mc Call M W, Favaro A, Kinsler P, et al. A spacetime cloak, or a history editor[J]. Journal of Optics, 2010, 13(2): 024003.

    [20] Fridman M, Farsi A, Okawachi Y, et al. Demonstration of temporal cloaking[J]. Nature, 2012, 481(7379): 62-65.

    [21] Lukens J M, Leaird D E, Weiner A M. A temporal cloak at telecommunication data rate[J]. Nature, 2013, 498(7453): 205-208.

    [22] Li G Z, Chen Y P, Jiang H W, et al. Enhanced Kerr electro-optic nonlinearity and its application in controlling second-harmonic generation[J]. Photonics Research, 2015, 3(4): 168-172.

    [23] Boyd R W. Material slow light and structural slow light: Similarities and differences for nonlinear optics [invited][J]. Journal of the Optical Society of America A, 2011, 28(12): A38-A44.

    [24] Zhang J F, Chen Y P, Lu F, et al. Flexible wavelength conversion via cascaded second order nonlinearity using broadband SHG in MgO-doped PPLN[J]. Optics Express, 2008, 16(10): 6957-6962.

    [25] Fürst J U, Strekalov D V, Elser D, et al. Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator[J]. Physical Review Letters, 2010, 104(15): 153901.

    [26] Lin J, Xu Y, Fang Z W, et al. Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(11): 114209.

    [27] Liu K, Shi J H, Chen X F. Linear polarization-state generator with high precision in periodically poled lithium niobate[J]. Applied Physics Letters, 2009, 94(10): 101106.

    [28] Rolland Q, Dupont S, Gazalet J, et al. Acousto-optic couplings in two-dimensional lithium niobate photonic crystal[C]. IOP Conference Series: Materials Science and Engineering, 2014, 68(1): 012006.

    [29] Zhang Ailing, He Peidong, Pan Honggang, et al. Design of electrically controlled double wavelength orthogonal polarization tunable filter[J]. Laser & Optoelectronics Progress, 2015, 52(7): 072301.

    [30] Jiang Meng, Feng Qiaoling, Wei Yufeng, et al. Recent advance in miniaturization of photo-acoustic spectroscopy gas sensor[J]. Laser & Optoelectronics Progress, 2015, 52(2): 020006.

    Jiang Haowei, Li Guangzhen, Liu Yian, Chen Yuping, Chen Xianfeng. Recent Advances in Cascading Electro-Optic Photonic Crystal[J]. Laser & Optoelectronics Progress, 2017, 54(6): 60001
    Download Citation