• Infrared and Laser Engineering
  • Vol. 51, Issue 1, 20210797 (2022)
Jingcheng Liang1, Weicong Chen2, Qiang Cheng1, Shi Jin2, and Tiejun Cui1
Author Affiliations
  • 1State Key Laboratory of Millimeter Wave, School of Information Science and Engineering, Southeast University, Nanjing 210096, China
  • 2National Mobile Communications Research Laboratory, School of Information Science and Engineering, Southeast University, Nanjing 210096, China
  • show less
    DOI: 10.3788/IRLA20210797 Cite this Article
    Jingcheng Liang, Weicong Chen, Qiang Cheng, Shi Jin, Tiejun Cui. Wireless communications based on information metasurfaces (Invited)[J]. Infrared and Laser Engineering, 2022, 51(1): 20210797 Copy Citation Text show less
    References

    [1] J B Pendry, A J Holden, D J Robbins, et al. Magnetism from conductors, and enhanced non-linear phenomena. IEEE Transactions on Microwave Theory and Techniques, 47, 2075-2084(1999).

    [2] R A Shelby. Experimental verification of a negative index of refraction. Science, 292, 77-79(2001).

    [3] J B Pendry. Negative refraction makes a perfect lens. Physical Review Letters, 85, 3966(2000).

    [4] Q Cheng, T J Cui, W X Jiang, et al. An omnidirectional electromagnetic absorber made of metamaterials. New Journal of Physics, 12, 063006(2010).

    [5] R Liu, C Ji, J Mock, et al. Broadband ground-plane cloak. Science, 323, 366-369(2009).

    [6] N I Landy, S Sajuyigbe, J Mock, et al. Perfect metamaterial absorber. Physical Review Letters, 100, 207402(2008).

    [7] N Fang, H Lee, C Sun, et al. Sub-diffraction-limited optical imaging with a silver superlens. Science, 308, 534-537(2005).

    [8] W X Jiang, C W Qiu, T C Han, et al. Broadband all-dielectric magnifying lens for far-field high-resolution imaging. Advanced Materials, 25, 6963-6968(2013).

    [9] W X Jiang, H F Ma, Q Cheng, et al. Illusion media: Generating virtual objects using realizable metamaterials. Applied Physics Letters, 96, 121910(2010).

    [10] Y Lai, N G Jack, H Y Chen, et al. Illusion optics: the optical transformation of an object into another object. Physical Review Letters, 102, 253902(2009).

    [11] W X Jiang, C W Qiu, T C Han, et al. Creation of ghost illusions using wave dynamics in metamaterials. Advanced Functional Materials, 23, 4028-4034(2013).

    [12] C N Chiu, K P Chang. A novel miniaturized-element frequency selective surface having a stable resonance. IEEE Antennas and Wireless Propagation Letters, 8, 1175-1177(2009).

    [13] K Sarabandi, N Behdad. A frequency selective surface with miniaturized elements. IEEE Transactions on Antennas and Propagation, 55, 1239-1245(2007).

    [14] S Liu, H Chen, T J Cui. A broadband terahertz absorber using multi-layer stacked bars. Applied Physics Letters, 106, 151601(2015).

    [15] H Xiong, J S Hong, C M Luo, et al. An ultrathin and broadband metamaterial absorber using multi-layer structures. Journal of Applied Physics, 114, 064109(2013).

    [16] N K Grady, J E Heyes, D R Chowdhury, et al. Terahertz meta-materials for linear polarization conversion and anomalous refraction. Science, 340, 1304-1307(2013).

    [17] L X Liu, X Q Zhang, M Kenney, et al. Broadband metasurfaces with simultaneous control of phase and amplitude. Advanced Materials, 26, 5031-5036(2014).

    [18] X Gao, W L Yang, H F Ma, et al. A reconfigurable broadband polarization converter based on an active metasurface. IEEE Transactions on Antennas and Propagation, 66, 6086-6095(2018).

    [19] S J Li, Y B Li, L Zhang, et al. Meta-microstructures: Programmable controls to scattering properties of a radiation array. Laser & Photonics Review, 15, 2000449(2021).

    [20] M Chen, A Epstein, G V Eleftheriades. Design and experimental verification of a passive Huygens' metasurface lens for gain enhancement of frequency-scanning slotted-waveguide antennas. IEEE Transactions on Antennas and Propagation, 67, 4678-4692(2019).

    [21] S Iqbal, S Liu, J Luo, et al. Controls of transmitted electromagnetic waves for diverse functionalities using polarization-selective dual-band 2 bit coding metasurface. Journal of Optics, 22, 015104(2020).

    [22] L L Li, H X Ruan, C Liu, et al. Machine-learning reprogrammable metasurface imager. Nature Communications, 10, 1082(2019).

    [23] T J Cui, M Q Qi, X Wan, et al. Coding metamaterials, digital meta-materials and programmable metamaterials. Light: Science & Applications, 3, e218(2014).

    [24] B Zhu, K Chen, N Jia, et al. Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface. Scientific Reports, 4, 4971(2014).

    [25] G Yoon, S So, M Kim, et al. Electrically tunable metasurface perfect absorber for infrared frequencies. Nano Converg, 4, 36(2017).

    [26] J Park, J H Kang, X Liu, et al. Electrically tunable Epsilon-Near-Zero (ENZ) metafilm absorbers. Scientific Reports, 5, 15754(2015).

    [27] Y L Sun, X G Zhang, Q Yu, et al. Infrared-controlled programmable metasurface. Science Bulletin, 65, 883-888(2020).

    [28] X G Zhang, W X Jiang, H L Jiang, et al. An optically driven digital metasurface for programming electromagnetic functions. Nature Electronics, 3, 165-171(2020).

    [29] X G Zhang, Q Yu, W Jiang, et al. Programmable metasurfaces: Polarization-controlled dual-programmable metasurfaces. Advanced Science, 7, 2070058(2020).

    [30] X L Zeng, M Gao, L X Zhang, et al. Design of a tuneable and broadband absorber using a switchable transmissive/reflective FSS. Iet Microwaves Antennas & Propagation, 12, 1211-1215(2018).

    [31] Q Ma, Q R Hong, G D Bai, et al. Editing arbitrarily linear polarizations using programmable metasurface. Physical Review Applied, 13, 021003(2020).

    [32] T J Cui, L L Li, S Liu, et al. Information Metamaterial System s. iScience, 23, 101403(2020).

    [33] Z Zhang, L Dai, X Chen, et al. Active RIS vs. passive RIS: Which will prevail in 6 G?. arXiv, 2103.15154v3(2021).

    [34] C W Huang, S Hu, G C Alexandropoulos, et al. Holographic MIMO surfaces for 6 G wireless networks: Opportunities, challenges, and trends. IEEE Wireless Communications, 27, 118-125(2020).

    [35] E Basar. Reconfigurable intelligent surface-based index modulation: A new beyond MIMO paradigm for 6 G. IEEE Transactions Communications, 68, 3187-3196(2020).

    [36] E Basar, M D Renzo, J D Rosny, et al. Wireless communications through reconfigurable intelligent surfaces. IEEE Access, 7, 116753-116773(2019).

    [37] O Özdogan, E Björnson, E G Larsson. Intelligent reflecting surfaces: Physics, propagation, and pathloss modeling. IEEE Wireless Communications Letters, 9, 581-585(2020).

    [38] Ellingson S W. Path loss in reconfigurable intelligent surfaceenabled channels[C]2021 IEEE 32nd Annual International Symposium on Personal, Indo Mobile Radio Communications (PIMRC), 2021: 829835.

    [39] Boulogegos A–A A, Alexiou A. Pathloss modeling of reconfigurable intelligent surface assisted THz wireless systems[C]IEEE International Conference on Communications, 2021: 16.

    [40] F H Danufane, M D Renzo, J D Rosny, et al. On the path-loss of reconfigurable intelligent surfaces: An approach based on green’s theorem applied to vector fields. IEEE Transactions on Communications, 69, 5573-5592(2021).

    [41] W Tang, M Z Chen, X Y Chen, et al. Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement. IEEE Transactions on Wireless Communications, 20, 421-439(2021).

    [42] W Tang, M Z Chen, X Y Chen, et al. Path loss modeling and measurements for reconfigurable intelligent surfaces in the millimeter-wave frequency band. arXiv, 2101.08607v2(2021).

    [43] S Abeywickrama, R Zhang, Q Q Wu. Intelligent reflecting surface: Practical phase shifter model and beamforming optimization. IEEE Transactions on Communications, 68, 5849-5863(2020).

    [44] W Chen, L Bai, W Tang, et al. Angle-dependent phase shifter model for reconfigurable intelligent surfaces: Does the angle-reciprocity hold?. IEEE Communications Letters, 24, 2060-2064(2020).

    [45] G Gradoni, M D Renzo. End-to-end mutual-coupling-aware communication model for reconfigurable intelligent surfaces: An electromagnetic-compliant approach based on mutual impedances. IEEE Wireless Communications Letters, 10, 938-942(2021).

    [46] X Qian, M D Renzo. Mutual coupling and unit cell aware optimization for reconfigurable intelligent surfaces. IEEE Wireless Communications Letters, 10, 1183-1187(2021).

    [47] A Abrardo, D Dardari, M D Renzo, et al. MIMO Interference channels assisted by reconfigurable intelligent surfaces: Mutual coupling aware sum-rate optimization based on a mutual impedance channel model. arXiv, 2102.07155(2021).

    [48] S Shen, B Clerckx, R Murch. Modeling and architecture design of intelligent reflecting surfaces using scattering parameter network analysis. arXiv, 2011.11362v2(2021).

    [49] X Yang, C-K Wen, S Jin. MIMO detection for reconfigurable intelligent surface-assisted millimeter wave systems. IEEE Journal on Selected Areas in Communications, 38, 1777-1792(2020).

    [50] B Zheng, C You, R Zhang. Double-IRS assisted multi-user MIMO: Cooperative passive beamforming design. IEEE Transactions on Wireless Communications, 20, 4513-4525(2021).

    [51] M A ElMossallamy, H Zhang, R Sultan, et al. On spatial multiplexing using reconfigurable intelligent surface. IEEE Wireless Communications Letters, 10, 226-230(2021).

    [52] P D Hougne, M Fink, G Lerosey. Optimally diverse communication channels in disordered environments with tuned randomness. Nature Electronics, 2, 36-41(2019).

    [53] W Chen, C K Wen, X Li, et al. Channel customization for joint Tx-RISs-Rx design in hybrid mmWave systems. arXiv, 2109.13058(2021).

    [54] J Zhao, X Yang, J Y Dai, et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems. National Science Review, 6, 231-238(2019).

    [55] J Y Dai, W K Tang, J Zhao, et al. Wireless communications through a simplified architecture based on time‐domain digital coding metasurface. Advanced Materials Technologies, 4, 1900044(2019).

    [56] W K Tang, J Y Dai, M Z Chen, et al. Programmable metasurface‐based RF chain‐free 8 PSK wireless transmitter. Electronics Letters, 55, 417-420(2019).

    [57] J Y Dai, W K Tang, L X Yang, et al. Realization of multi-modulation schemes for wireless communication by time-domain digital coding metasurface. IEEE Transactions on Antennas and Propagation, 68, 1618-1627(2020).

    [58] M Z Chen, W K Tang, J Y Dai, et al. Accurate and broadband manipulations of harmonic amplitudes and phases to reach 256 QAM millimeter-wave wireless communications by time-domain digital coding metasurface. National Science Review, nwab134(2021).

    [59] T J Cui, S Liu, G D Bai, et al. Direct transmission of digital message via programmable coding metasurface. Research, 2019, 2584509(2019).

    [60] X Wan, Q Zhang, T Y Chen, et al. Multichannel direct transmissions of near-field information. Light: Science & Applications, 8, 1-8(2019).

    [61] H Zhao, Y Shuang, M L Wei, et al. Metasurface-assisted massive backscatter wireless communication with commodity Wi-Fi signals. Nature Communication, 11, 3926(2020).

    [62] L Zhang, M Z Chen, W K Tang, et al. A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces. Nature Electronics, 4, 218-227(2021).

    [63] T J Cui, S Liu, L L Li. Information entropy of coding metasurface. Light: Science & Applications, 5, e16172(2016).

    [64] H T Wu, G D Bai, S Liu, et al. Information theory of metasurfaces. National Science Review, 7, 561-571(2020).

    [65] J Y Dai, J Zhao, Q Cheng, et al. Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface. Light: Science & Applications, 7, 90(2018).

    [66] L Lu, G Y Li, A L Swindlehurst, et al. An overview of massive MIMO: Benefits and challenges. IEEE J Sel Top Signal Process, 8, 742-758(2014).

    Jingcheng Liang, Weicong Chen, Qiang Cheng, Shi Jin, Tiejun Cui. Wireless communications based on information metasurfaces (Invited)[J]. Infrared and Laser Engineering, 2022, 51(1): 20210797
    Download Citation