• Acta Optica Sinica
  • Vol. 40, Issue 17, 1722003 (2020)
Xin Wang*, Qiang Liu, Hao Zhou, Jianjun Jia, and Rong Shu
Author Affiliations
  • Key Laboratory of Space Active Opto-Electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • show less
    DOI: 10.3788/AOS202040.1722003 Cite this Article Set citation alerts
    Xin Wang, Qiang Liu, Hao Zhou, Jianjun Jia, Rong Shu. Aspheric Test Combining Front and Back Null Compensation for Infinite Optical Path[J]. Acta Optica Sinica, 2020, 40(17): 1722003 Copy Citation Text show less
    Optical layout of aspheric test combining front and back null compensation for infinite optical path
    Fig. 1. Optical layout of aspheric test combining front and back null compensation for infinite optical path
    Relationship between β2 and Q1 of back null compensation lens
    Fig. 2. Relationship between β2 and Q1 of back null compensation lens
    Relationship between β2 and Q2 of front null compensation lens
    Fig. 3. Relationship between β2 and Q2 of front null compensation lens
    Maximum aperture of aspheric mirror to be tested
    Fig. 4. Maximum aperture of aspheric mirror to be tested
    Maximum relative aperture of aspheric mirror to be tested
    Fig. 5. Maximum relative aperture of aspheric mirror to be tested
    Optical layout designed by using front and back null compensation when R=9 m
    Fig. 6. Optical layout designed by using front and back null compensation when R=9 m
    Surface wavefront error designed by using front and back null compensation when R=9 m
    Fig. 7. Surface wavefront error designed by using front and back null compensation when R=9 m
    Spherical aberration designed by using front and back null compensation when R=9 m
    Fig. 8. Spherical aberration designed by using front and back null compensation when R=9 m
    Optical layout of principle experiment designed by using front and back null compensation for infinite optical path
    Fig. 9. Optical layout of principle experiment designed by using front and back null compensation for infinite optical path
    Surface wavefront error in principle experiment designed by using front and back null compensation for infinite optical path
    Fig. 10. Surface wavefront error in principle experiment designed by using front and back null compensation for infinite optical path
    Optical layout designed by using back null compensation for infinite optical path
    Fig. 11. Optical layout designed by using back null compensation for infinite optical path
    Surface wavefront error designed by using back null compensation for infinite optical path
    Fig. 12. Surface wavefront error designed by using back null compensation for infinite optical path
    Experiment prototype
    Fig. 13. Experiment prototype
    Test result of wavefront error
    Fig. 14. Test result of wavefront error
    LensOptical parameterβ2=1.10β2=1.35β2=1.60β2=1.70
    r1 /mm0.347760.099760.031950.03412
    Back null compensation lensr2 /mm-0.05455-0.062420.27777-0.34637
    Thickness /mm0.010.010.010.01
    r3 /mm0.13997-0.24919-2.49594-0.10603
    Front null compensation lensr4 /mm0.21677-0.09689-0.09925-0.04629
    Thickness /mm0.010.010.010.01
    Distance between two lens /mm0.1730.1380.1200.104
    Distance between front compensationlens and aspheric mirror /mm0.9050.9040.9040.904
    Table 1. Optical parameters calculated for different β2
    Optical elementSurface shapeRadius ofcurvature /mmAsphericcoefficientDiameterMaterial
    Aspheric mirrorConic9000e2=13.7 mMetal or glass
    Back null compensation lensSpherical1098.5 and 575.60370 mmK9
    Front null compensation lensSpherical707.1 and 504.10370 mmK9
    Table 2. Optical parameters of concave aspheric mirror with R= 9 m designed by using front and back null compensation
    Tolerance parameterBack null compensation lensFront null compensation lens
    Refractive index0.00050.0005
    Decentering distance /mm0.0040.004
    Tilt angle /(°)0.00080.0008
    Thickness /mm0.020.02
    Radius of curvature /mm0.10.1
    RMS of surface wavefront errorλ/40λ/40
    Table 3. Tolerance parameters
    TypeRadius /mmThickness /mmGlassDiameter /mme2
    StandardInfinity100Air500
    Standard128.9315K9500
    Standard-74.01146.26Air500
    Standard-87.3410K9500
    Standard-61.36917.25Air500
    Standard-1000-917.25Reflector5001.000
    Standard-61.36-10.00K9500
    Standard-87.34-146.26Air500
    Standard-74.01-15K9500
    Standard128.93-100Air500
    Table 4. Optical parameters of principle experiment designed by using front and back null compensation for infinite optical path
    TypeRadius /mmThickness /mmGlassDiameter /mme2
    StandardInfinity100Air430
    Standard32.2510K9430
    Standard39.9091.17Air430
    Standard204.625K9150
    Standard-71.761052.28Air150
    Standard-1000-1052.28Reflector4301.000
    Standard-71.76-5K9150
    Standard204.62-91.17Air150
    Standard39.90-10K9430
    Standard32.25-100Air430
    Table 5. Optical parameters designed by using back null compensation for infinite optical path
    Optical systemAlignment errorChange of RMS of surfacewavefront error /λ
    Test system by usingfront null compensation andback null compensation for infinite optical pathDecenter distance is 0.002 mm forback null compensation lens0.0072
    Tilt angle is 0.0008° for back nullcompensation lens0.0032
    Decenter distance is 0.002 mm forfront null compensation lens0.0043
    Tilt angle is 0.0008° for front nullcompensation lens0.00098
    Estimated RMS of surface wavefront errorafter 300 Monte Carlo analyses0.0083
    OFFNER system byusing back null compensationfor infinite optical pathDecenter distance is 0.002 mmfor back null compensation lens0.0101
    Tilt angle is 0.0008° forback null compensation lens0.0023
    Decenter distance is 0.002 mm forfront null compensation lens0.0071
    Tilt angle is 0.0008° for front nullcompensation lens0.00023
    Estimated RMS of surface wavefronterror after 300 Monte Carlo analyses0.0110
    Table 6. Tolerance comparison of two test configurations
    Xin Wang, Qiang Liu, Hao Zhou, Jianjun Jia, Rong Shu. Aspheric Test Combining Front and Back Null Compensation for Infinite Optical Path[J]. Acta Optica Sinica, 2020, 40(17): 1722003
    Download Citation