• Journal of Infrared and Millimeter Waves
  • Vol. 44, Issue 2, 285 (2025)
Zhao-Xu LI1, Qing-Xu XU1, Wei AN1,*, Xu HE1..., Gao-Wei GUO1, Miao LI1,**, Qiang LING1, Long-Guang WANG2, Chao XIAO1 and Zai-Ping LIN1|Show fewer author(s)
Author Affiliations
  • 1College of Electronic Science and Technology,National University of Defense Technology,Changsha 410073,China
  • 2Aviation University of Air Force,Changchun 130000,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2025.02.016 Cite this Article
    Zhao-Xu LI, Qing-Xu XU, Wei AN, Xu HE, Gao-Wei GUO, Miao LI, Qiang LING, Long-Guang WANG, Chao XIAO, Zai-Ping LIN. A lightweight dark object detection network for infrared images[J]. Journal of Infrared and Millimeter Waves, 2025, 44(2): 285 Copy Citation Text show less
    The thermal infrared images of real civial airplanes capured by SDGSAT-1:(a)8~10.5 μm;(b)10.3~11.3 μm;(c)11.5~12.5 μm
    Fig. 1. The thermal infrared images of real civial airplanes capured by SDGSAT-1:(a)8~10.5 μm;(b)10.3~11.3 μm;(c)11.5~12.5 μm
    Schematic diagram of AirFormer network structure
    Fig. 2. Schematic diagram of AirFormer network structure
    Schematic diagram of the calculation for object abundance matrix: (a) object shape modeling; (b) shape model embedding in image; (c) object abundance matrix calculation; (d) Gaussian blurring of the abundance matrix
    Fig. 3. Schematic diagram of the calculation for object abundance matrix: (a) object shape modeling; (b) shape model embedding in image; (c) object abundance matrix calculation; (d) Gaussian blurring of the abundance matrix
    The 1st real civial aircraft and its simulation: (a) simulated image; (b) real object; (c) simulated object
    Fig. 4. The 1st real civial aircraft and its simulation: (a) simulated image; (b) real object; (c) simulated object
    The 5th real civial aircraft and its simulation: (a) simulated image; (b) real object; (c) simulated object
    Fig. 5. The 5th real civial aircraft and its simulation: (a) simulated image; (b) real object; (c) simulated object
    Simulated sequence examples: (a) sequence 0041; (b) sequence 0077; (c) sequence 0266; (d) sequence 0393
    Fig. 6. Simulated sequence examples: (a) sequence 0041; (b) sequence 0077; (c) sequence 0266; (d) sequence 0393
    The detection results of AirFormer for real civil airports: (a) the 1st real airport; (b) the 2nd real airport; (c) the 3rd real airport; (d) the 4th real airport; (e) the 5th real airport
    Fig. 7. The detection results of AirFormer for real civil airports: (a) the 1st real airport; (b) the 2nd real airport; (c) the 3rd real airport; (d) the 4th real airport; (e) the 5th real airport
    序号经度纬度日期当地时间

    局部

    背景

    目标一125.22° E30.86°N23.03.1609:37
    目标二115.16°E39.65°N23.03.2220:30陆地、云
    目标三123.71°E37.32°N23.08.0309:42
    目标四118.42°E34.28°N23.10.0109:01陆地、云
    目标五126.34°E37.21°N23.10.1720:41
    Table 1. The imaging information of real civial airplanes
    序号波段

    目标

    灰度值

    局部背景

    平均灰度值

    差值比例
    目标一B1141915629.17%
    B2164418179.53%
    B3117712606.59%
    目标二B1101410442.92%
    B2119812393.34%
    B38588751.98%
    目标三B1180419175.91%
    B2203621645.96%
    B3139814614.37%
    目标四B1165217244.21%
    B2188019674.44%
    B3131813593.08%
    目标五B1166817735.95%
    B2192820415.58%
    B3137014253.88%
    Table 2. Grayscale value information of real civial airplanes and background
    参数目标1目标2
    坐标(10.2,10.7)(10.3,9.95)
    目标长度80m80m
    航向角45°
    差值比例0.180.11
    高斯模糊标准差0.70.7
    Table 3. Simulation parameter settings for real objects

    场景

    类型

    训练集

    序列数

    训练集目标数测试集序列数测试集目标数
    波段B130119703382260
    B236322713452332
    B333621313171977
    帧频1~5 FPS48030594993229
    6~10 FPS52033135013340

    帧间

    位移

    0像素33921583152063
    1像素33921573612374
    2像素32220573242132

    噪声

    强度

    0.00249732004673079
    0.00550331725333490
    总计1000637210006569
    Table 4. Sample numbers under different load parameters on the IRAir dataset
    参数

    序列

    0041

    序列

    0077

    序列

    0266

    序列

    0393

    波段B2B2B3B3
    帧频1 FPS6 FPS2 FPS10 FPS
    帧间位移0像素1像素2像素2像素
    噪声强度0.0020.0020.0050.002
    目标数量41085
    Table 5. The parameter settings of example simulated sequences
    方法CornerNetYOLOv3Deformable DETRRTMDET-tinyYOLOX-tinyDSFNetAirFormer
    AP0.3360.2700.2740.3500.3980.2330.349
    AP200.7700.7520.7090.8120.7650.5280.737
    召回率0.7380.7660.6880.5440.7160.5040.710
    准确率0.9040.9020.8970.6750.8430.9320.826
    F10.8120.8280.7790.6030.7740.6530.764
    参数量201.0M61.5M41.1M2.7M2.7M17.0M37.1K
    FLOPs112.8G12.4G15.0G5.9G5.5G12.2G46.2M
    推理耗时29.4 ms11.7 ms32.3 ms10.6 ms9.1 ms50.1 ms5.7 ms
    Table 6. Performance comparison of detection methods
    目标长度/m真值数检出数召回率/%
    406 2223 01648.5
    506 1544 62675.2
    602 1091 83887.2
    702 0161 79889.2
    802 0621 90992.6
    Table 7. Detection performance comparison of AirFormer for objects with different sizes
    Zhao-Xu LI, Qing-Xu XU, Wei AN, Xu HE, Gao-Wei GUO, Miao LI, Qiang LING, Long-Guang WANG, Chao XIAO, Zai-Ping LIN. A lightweight dark object detection network for infrared images[J]. Journal of Infrared and Millimeter Waves, 2025, 44(2): 285
    Download Citation