• Acta Optica Sinica
  • Vol. 30, Issue s1, 100203 (2010)
Zhang Yani1、2、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/aos201030.s100203 Cite this Article Set citation alerts
    Zhang Yani. Design and Optimization of Low-Dispersion High-Nonlinear Photonic Crystal Fiber for Four-Wave Mixing[J]. Acta Optica Sinica, 2010, 30(s1): 100203 Copy Citation Text show less
    References

    [1] H. Takesue, K. Inoue. Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop[J]. Phys. Rev. A, 2004, 70(3): 031802. 1~4

    [2] B. Khubchandani, P. N. Guzdar, R. Roy. Influence of stochasticity on multiple four-wave-mixing processes in an optical fiber[J]. Phys. Rev. E, 2002, 66(6): 066609.1~8

    [3] Q. Lin, F. Yaman, G. P. Agrawal. Photon-pair generation in optical fibers through four-wave mixing: role of raman scattering and pump polarization[J]. Phys. Rev. A, 2007, 75(2): 023803.1~20

    [4] J. Fulconis, O. Alibart, J. L. O’Brien et al.. Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source[J]. Phys. Rev. Lett., 2007, 99(12): 120501.1~4

    [5] T. Ozeki. High-fidelity transmission of quantum polarization states through birefringent optical fibers[J]. Phys. Rev. A, 2006, 74(2): 024302.1~3

    [6] C. J. McKinstrie, S. Radic, M. G. Raymer et al.. Unimpaired phase-sensitive amplification by vector four-wave mixing near the zero-dispersion frequency[J]. Opt. Express, 2007, 15(5): 2178~2189

    [7] Liu Xueming, Zhou Xiaoqun, Lu Chao. Multiple four wave mixing self stability in optical fibers[J]. Phys. Rev. A, 2005, 72(1): 013811.1~9

    [8] C. Lesvigne, V. Couderc, A. Tonello et al.. Visible supercontinuum generation controlled by intermodal four-wave mixing in microstructured fiber[J]. Opt. Lett., 2007, 32(15): 2173~2175

    [9] D. Elser, U. L. Andersen, A. Korn et al.. Reduction of guided acousticwave brillouin scattering in photonic crystal fibers[J]. Phys. Rev. Lett., 2006, 97(13): 133901.1~4

    [10] A. B. Fedotov, A. A. Voronin, E. E. Serebryannikov et al.. Multifrequency third-harmonic generation by red-shifting solitons in a multimode photonic-crystal fiber[J]. Phys. Rev. E, 2007, 75(1): 016614.1~7

    [11] P. Dupriez, F. Poletti, P. Horak et al.. Efficient white light generation in secondary cores of holey fibers[J]. Opt. Express, 2007, 15(7): 3729~3736

    [12] Liu Xueming. Theory and experiments for multiple four-wave mixing processes with multifrequency pumps in optical fibers[J]. Phys. Rev. A, 2008, 77(4): 043818.1~10

    [13] T. M. Monro, H. Ebendorff-Heidepriem. Progress in microstructured optical fibers[J]. Annu. Rev. Mater. Res., 2006, 36(4): 467~495

    [14] Wang Qiuguo, Yang Bojun, Zhang Lan et al.. Experiment study of wavelength conversion in a dispersion-flattened photonic crystal fiber[J]. Chin. Opt. Lett., 2009, 5(9): 538~539

    [15] Liu Xueming, Zhou Xiaoqun, Tang Xiufeng et al.. Switchable and tunable multiwavelength erbium-doped fiber laser with fiber Bragg gratings and photonic crystal fiber[J]. IEEE Photon. Technol. Lett., 2005, 17(8): 1626~1628

    [16] Liu Xueming, Yang Xiufeng, Lu Fuyun et al.. Stable and uniform dual-wavelength erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber[J]. Opt. Express, 2005, 13(1): 142~147

    [17] W. H. Reeves, J. C. Knight, P. St. J. Russell. Demonstration of ultra-flattened dispersion in photonic crystal fibers[J]. Opt. Express, 2002, 10(14): 609~613

    [18] L. P. Shen, W. P. Huang, S. S. Jian. Design and optimization of photonic crystal fibers for broad-band dispersion compensation[J]. IEEE Photon Technol. Lett., 2003, 15(4): 540~542

    [19] F. Poli, A. Cucinotta, S. Selleri et al.. Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers[J]. IEEE Photon Technol. Lett., 2004, 16(4): 1065~1067

    [20] M. Koshiba, Y. Tsuji. Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems[J]. J. Lightwave Technol, 2000, 18(5): 737~740

    [21] Zhang Yani. Design of low-loss single-polarization single-mode photonic-crystal fiber based on polymer[J]. J. Mod. Opt., 2008, 55(12): 3563~3571

    [22] Zhang Yani, Miao Runcai, Ren Liyong et al.. Polarization properties of elliptical core non-hexagonal symmetry polymer photonic crystal fibre[J]. Chin. Phys., 2007, 16(6): 1719~1725

    [23] Zhang Yani. Ren Liyong, Li kang et al.. Guiding mode in elliptical core microstructured polymer optical fiber[J]. Chin. Opt. Lett., 2009, 5(4): 194~196

    [24] Zhang Yani. High birefringence tunable effect of microstructured polymer optical fiber[J]. Acta Physica Sinica, 2008, 57(9): 5729~5734

    [25] K. Saitoh, M. Koshiba. Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion[J]. Opt. Express, 2003, 11(8): 843~852

    [26] S. Coen, A. H. L. Chau, R. Leonhardt et al.. Supercontinuum generation by stimulated raman scattering and parametric four-wave mixing in photonic crystal fibers[J]. J. Opt. Soc. Am. B, 2002, 19(4): 753~764

    [27] K. K. Chow, C. Shu, C. Lin et al.. Polarization insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion flattened nonlinear photonic crystal fiber[J]. IEEE Photo. Technol. Lett., 2005, 17(3): 624~626

    [28] Jia Liang, Zhang Fan, Li Ming et al.. Numerical analysis for four-wave mixing based wavelength conversion of differential phase-shift keying signals[J]. Chin. Opt. Lett., 2009, 7(10): 617~620

    Zhang Yani. Design and Optimization of Low-Dispersion High-Nonlinear Photonic Crystal Fiber for Four-Wave Mixing[J]. Acta Optica Sinica, 2010, 30(s1): 100203
    Download Citation