• Laser & Optoelectronics Progress
  • Vol. 51, Issue 1, 11102 (2014)
Wei Tongda1、2、3、*, Zhang Yunhai3, Xiao Yun1、2、3, and Tang Yuguo1、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/lop51.011102 Cite this Article Set citation alerts
    Wei Tongda, Zhang Yunhai, Xiao Yun, Tang Yuguo. Effects of Polarization State and Effective Numerical Aperture on the Resolution in Confocal Total Internal Reflection Microscopy[J]. Laser & Optoelectronics Progress, 2014, 51(1): 11102 Copy Citation Text show less
    References

    [1] Jensen E C. Types of imaging, part 2: an overview of fluorescence Microscopy[J]. Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology, 2012, 295(10): 1621-1627.

    [2] W E Trotman, D J Taatjes, E G Bovill. Multifluorescence confocal microscopy: application for a quantitative analysis of hemostatic proteins in human venous valves[J]. Methods in Molecular Biology, 2013,931: 85-95.

    [3] B V R Tata, B Raj. Confocal laser scanning microscopy: applications in material science and technology [J]. Bulletin of Materials Science, 1998, 21(4): 263-278.

    [4] Jpawley. Fundamental Limits in Confocal Microscopy. In: J B pawley (ed.). Handbook of Biological Confocal Microscopy, (2nd ed.)[M]. New York: Plenum, 1995. 19-37.

    [5] Axelrod D. Total internal reflection fluorescence microscopy [J]. Methods in Cell Biology, 2008, 89: 169-221.

    [6] M K Loder, T Tsuboi, G A Rutter. Live-cell imaging of vesicle trafficking and divalent metal ions by total internal reflection fluorescence (TIRF) microscopy [J]. Methods in Molecular Biology, 2013, 950: 13-26.

    [7] Vizcay-Barrena G, Stephen E D, Martin-Fernandez M L, et al.. Subcellular and single-molecule imaging of plant fluorescent proteins using total internal reflection fluorescence microscopy (TIRFM) [J]. J Experimental Botany, 2011, 62(15): 5419-5428.

    [8] Meunier A, Jouannot O, Fulcrand R, et al.. Coupling amperometry and total internal reflection fluorescence microscopy at ITO surfaces for monitoring exocytosis of single vesicles [J]. Angewandte Chemie-International Edition, 2011, 50(22): 5081-5084.

    [9] Wan Y, Ill W M A, Fan L, et al.. Variable-angle total internal reflection fluorescence microscopy of intact cells of Arabidopsis thaliana [J]. Plant Methods, 2011, 7: 27.

    [10] J W M Chon, M Gu. Scanning total internal reflection fluorescence microscopy under one-photon and two-photon excitation: image formation [J]. Appl Opt, 2004, 43(5): 1063-1071.

    [11] T Ruckstuhl, S Seeger. Attoliter detection volumes by confocal total-internal-reflection fluorescence microscopy [J]. Opt Lett, 2004, 29(6): 569-571.

    [12] T P Burghardt, K Ajtai, J Borejdo. In situ single-molecule imaging with attoliter detection using objective total internal reflection confocal microscopy [J]. Biochemistry, 2006, 45(13): 4058-4068.

    [13] B Richards, E Wolf. Electromagnetic diffraction in optical systems.2. Structure of the image field in an aplanatic system [J]. Proc R Soc Lond A, 1959, 253(1274): 358-379.

    [14] M J Nasse, J C Woehl. Realistic modeling of the illumination point spread function in confocal scanning optical microscopy[J]. J Opt Soc Am A, 2010, 27(2): 295-302.

    [15] Watanabe K, Horiguchi N, Kano H, et al.. Optimized measurement probe of the localized surface plasmon microscope by using radially polarized illumination [J]. Appl Opt, 2007, 46(22): 4985-4990.

    [16] Kenny F, Lara D, Rodriguez-Herrera O G, et al.. Complete polarization and phase control for focus-shaping in high-NA microscopy [J]. Opt Express, 2012, 20(13): 14015-14029.

    [17] Fan F, Du T, Srivastava A K, et al.. Axially symmetric polarization converter made of patterned liquid crystal quarter wave plate[J]. Opt Express, 2012, 20(21): 23036-23043.

    [18] Cheng Kan,Tan Qiaofeng,Zhou Zhehai, et al.. Design of three-dimensional superresolution diffractive optical elements for Radially Polarized Beam[J]. Acta Optica Sinica, 2010, 30(11): 3295-3299.

    [19] Wang Yifan, Kuang Cuifang, Gu Zhaotai, et al.. Generation of polarization-adjustable cylindrical vector beams based on vortex phase modulation and interference[J]. Acta Optica Sinica, 2013, 33(10): 1005001.

    [20] Huang Yan, Ye Hong′an, Gao Laixu, et al.. New method of generating vectorial polarized beams[J]. Chinese Lasers, 2012: 39(4): 0402004.

    [21] Guo Ling,Li Jinsong. Phase pupil filter with cosine function for sharper focus of radially polarized beam[J]. Laser & Optoelectronics Progress, 2012, 49(12): 121001.

    [22] Chen Huifang, Liu Tao, Zhang Zaixuan. Shaper focus of radially polarized beam with a continuous phase filter[J]. Chinese J Lasers, 2012, 39(6): 0616001.

    CLP Journals

    [1] ZHANG Wen-jing, ZHANG Zhi-wei, SUN Yun-qiang, ZHU Xiang, DENG Nan, ZHANG Cai-feng, GUO Peng-cheng, LI Qing-sheng. Polarization Display and Measurement Experiment of Elliptically Polarized Beam[J]. Acta Photonica Sinica, 2017, 46(5): 526003

    [2] Hu Huijie, Gong Yan, Wu Xiaodong. Simulation about Influence of Specular Scattering on Microscope Objective Stray Light Characteristics[J]. Laser & Optoelectronics Progress, 2015, 52(10): 101104

    Wei Tongda, Zhang Yunhai, Xiao Yun, Tang Yuguo. Effects of Polarization State and Effective Numerical Aperture on the Resolution in Confocal Total Internal Reflection Microscopy[J]. Laser & Optoelectronics Progress, 2014, 51(1): 11102
    Download Citation