• Chinese Journal of Quantum Electronics
  • Vol. 39, Issue 1, 32 (2022)
Zhiyuan ZHOU* and Baosen SHI
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2022.01.002 Cite this Article
    ZHOU Zhiyuan, SHI Baosen. Recent progress on frequency conversion of orbital angular momentum carrying light[J]. Chinese Journal of Quantum Electronics, 2022, 39(1): 32 Copy Citation Text show less
    References

    [1] Franken P A, Hill A E, Peters C W, et al. Generation of optical harmonics [J]. Physical Review Letters, 1961, 7(4): 118-119.

    [2] Alnis J, Gustafsson U, Somesfalean G, et al. Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm [J]. Applied Physics Letters, 2000, 76(10): 1234-1236.

    [3] Wang Z M, Zhang J Y, Yang F, et al. Stable operation of 4 mW nanoseconds radiation at 1773 nm by second harmonic generation in KBe2BO3F2 crystals [J]. Optics Express, 2009, 17(22): 20021-20032.

    [4] Li Y, Zhou Z Y, Ding D S, et al. Low-power-pumped high-efficiency frequency doubling at 397.5 nm in a ring cavity [J]. Chinese Optics Letters, 2014, 12: 111901.

    [5] Peng Y F, Wang W M, Wei X B, et al. High-efficiency mid-infrared optical parametric oscillator based on PPMgO:CLN [J]. Optics Letters, 2009, 34(19): 2897-2899.

    [6] Chaitanya Kumar S, Ebrahim-Zadeh M. High-power, continuous-wave, mid-infrared optical parametric oscillator based on MgO:sPPLT [J]. Optics Letters, 2011, 36(13): 2578-2580.

    [7] Yang C, Liu S L, Zhou Z Y, et al. Extra-cavity-enhanced difference-frequency generation at 1.63 μm [J]. Journal of the Optical Society of America B, 2020, 37(5): 1367-1371.

    [8] Picqué N, Hnsch T W. Frequency comb spectroscopy [J]. Nature Photonics, 2019, 13: 146-157.

    [9] Fortier T, Baumann E. 20 years of developments in optical frequency comb technology and applications [J]. Communications Physics, 2019, 2: 153.

    [10] Alfano R R. The Supercontinuum Laser Source [M]. New York: Springer, 2005.

    [11] Kwiat P G, Mattle K, Weinfurter H, et al. New high-intensity source of polarization-entangled photon pairs [J]. Physical Review Letters, 1995, 75(24): 4337-4341.

    [12] Li Y H, Zhou Z Y, Feng L T, et al. On-chip multiplexed multiple entanglement sources in a single silicon nanowire [J]. Physical Review Applied, 2017, 7: 064005.

    [13] Li Y, Zhou Z Y, Ding D S, et al. CW-pumped telecom band polarization entangled photon pair generation in a Sagnac interferometer [J]. Optics Express, 2015, 23: 28792-28800.

    [14] Wang J W, Paesani S, Ding Y H, et al. Multidimensional quantum entanglement with large-scale integrated optics [J]. Science, 2018, 360(6386): 285-291.

    [15] Sala K L, Kenney-Wallace G A, Hall G E. CW autocorrelation measurements of picosecond laser pulses [J]. IEEE Journal of Quantum Electronics, 1980, 16(9): 990-996.

    [16] Trebino R, DeLong K W, Fittinghoff D N, et al. Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating [J]. Review of Scientific Instruments, 1997, 68: 3277.

    [17] Hoover E E, Squier J A. Advances in multiphoton microscopy technology [J]. Nature Photonics, 2013, 7: 93-101.

    [18] Kumar P. Quantum frequency conversion [J]. Optics Letters, 1990, 15: 1476-1478.

    [19] Mancinelli M, Trenti A, Piccione S, et al. Mid-infrared coincidence measurements on twin photons at room temperature [J]. Nature Communications, 2017, 8: 15184.

    [20] Zhou Z Y, Liu S L, Liu S K, et al. Superresolving phase measurement with short-wavelength NOON states by quantum frequency up-conversion [J]. Physical Review Applied, 2017, 7: 064025.

    [21] Forbes A, de Oliveira M, Dennis M R. Structured light [J]. Nature Photonics, 2021, 15: 253-262.

    [22] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes [J]. Physical Review A, 1992, 45(11): 8185-8189.

    [23] Franke-Arnold S, Allen L, Padgett M. Advances in optical angular momentum [J]. Laser & Photonics Reviews, 2008, 2(4): 299-313.

    [24] Shen Y J, Wang X J, Xie Z W, et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities [J]. Light: Science & Applications, 2019, 8: 90.

    [25] Courtial J, Padgett M J. Performance of a cylindrical lens mode converter for producing Laguerre-Gaussian laser modes [J]. Optics Communications, 1999, 159: 13-18.

    [26] Maji S, Mandal A, Brundavanam M M. Gouy phase-assisted topological transformation of vortex beams from fractional fork holograms [J]. Optics Letters, 2019, 44(9): 2286-2289.

    [27] Marrucci L. The q-plate and its future [J]. Journal of Nanophotonics, 2013, 7: 078598.

    [28] Kotlyar V V, Almazov A A, Khonina S N, et al. Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate [J]. Journal of the Optical Society of America A, 2005, 22(5): 849-861.

    [29] Maurer C, Jesacher A, Bernet S, et al. What spatial light modulators can do for optical microscopy [J]. Laser & Photonics Reviews, 2011, 5(1): 81-101.

    [30] Cai X L, Wang J W, Strain M J, et al. Integrated compact optical vortex beam emitters [J]. Science, 2012, 338(6105): 363-366.

    [31] Stav T, Faerman A, Maguid E, et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials [J]. Science, 2018, 361(6407): 1101-1104.

    [32] Zhang Z F, Qiao X D, Midya B, et al. Tunable topological charge vortex microlaser [J]. Science, 2020, 368(6492): 760-763.

    [33] Fickler R, Campbell G, Buchler B, et al. Quantum entanglement of angular momentum states with quantum numbers up to 10, 010 [J]. PNAS, 2016, 113(48): 13642-13647.

    [34] Liu M Z, Zhu W Q, Huo P C, et al. Multifunctional meta surfaces enabled by simultaneous and independent control of phase and amplitude for orthogonal polarization states [J]. Light: Science & Applications, 2021, 10: 107.

    [35] Naidoo D, Roux F S, Dudley A, et al. Controlled generation of higher-order Poincaré sphere beams from a laser [J]. Nature Photonics, 2016, 10: 327-332.

    [36] Vickers J, Burch M, Vyas R, et al. Phase and interference properties of optical vortex beams [J]. Journal of the Optical Society of America A, 2008, 25(3): 823-827.

    [37] Leach J, Courtial J, Skeldon K, et al. Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon [J]. Physical Review Letters, 2004, 92: 013601.

    [38] Leach J, Padgett M J, Barnett S M, et al. Measuring the orbital angular momentum of a single photon [J]. Physical Review Letters, 2002, 88: 257901.

    [39] Zhang W, Qi Q, Zhou J, et al. Mimicking Faraday rotation to sort the orbital angular momentum of light [J]. Physical Review Letters, 2014, 112: 153601.

    [40] Zhou Y, Mirhosseini M, Fu D, et al. Sorting photons by radial quantum number [J]. Physical Review Letters, 2017, 119: 263602.

    [41] Wei S, Earl S K, Lin J, et al. Active sorting of orbital angular momentum states of light with a cascaded tunable resonator [J]. Light: Science & Applications, 2020, 9: 10.

    [42] Li Y, Zhou Z Y, Ding D S, et al. Non-destructive splitter of twisted light based on modes splitting in a ring cavity [J]. Optics Express, 2016, 24(3): 2166-2173.

    [43] Berkhout G C G, Lavery M P J, Courtial J, et al. Efficient sorting of orbital angular momentum states of light [J]. Physical Review Letters, 2010, 105: 153601.

    [44] Mirhosseini M, Malik M, Shi Z, et al. Efficient separation of the orbital angular momentum eigenstates of light [J]. Nature Communications, 2013, 4: 2781.

    [45] Wen Y, Chremmos I, Chen Y, et al. Spiral transformation for high-resolution and efficient sorting of optical vortex modes [J]. Physical Review Letters, 2018, 120: 193904.

    [46] Nicolas A, Veissier L, Giacobino E, et al. Quantum state tomography of orbital angular momentum photonic qubits via a projection-based technique [J]. New Journal of Physics, 2015, 17: 033037.

    [47] Schulze C, Dudley A, Brüning R, et al. Measurement of the orbital angular momentum density of Bessel beams by projection into a Laguerre-Gaussian basis [J]. Applied Optics, 2014, 53(26): 5924-5933.

    [48] Suprano A, Zia D, Polino E, et al. Enhanced detection techniques of orbital angular momentum states in the classical and quantum regimes [J]. New Journal of Physics, 2021, 23: 073014.

    [49] Boyd R W. Nonlinear Optics [M]. 3rd Edition, 2007, New York: Elsevier.

    [50] Armstrong J A, Bloembergen N, Ducuing J, et al. Interactions between light waves in a nonlinear dielectric [J]. Physical Review, 1962, 127: 1918.

    [51] Fejer M M, Magel G A, Jundt D H, et al. Quasi-phase-matched second harmonic generation: Tuning and tolerances [J]. IEEE Journal of Quantum Electronics, 1992, 28: 2631.

    [52] Courtial J, Dholakia K, Allen L, et al. Second-harmonic generation and the conservation of orbital angular momentum with high-order Laguerre-Gaussian modes [J]. Physical Review A, 1997, 56(5): 4193-4196.

    [53] Shao G H, Wu Z J, Chen J H, et al. Nonlinear frequency conversion of fields with orbital angular momentum using quasi-phase matching [J]. Physical Review A, 2013, 88: 063827.

    [54] Zhou Z Y, Ding D S, Jiang Y K, et al. Orbital angular momentum light frequency conversion and interference with quasi-phase matching crystals [J]. Optics Express, 2014, 22: 20298-20310.

    [55] Li Y, Zhou Z Y, Ding D S, et al. Sum frequency generation with two orbital angular momentum carrying laser beams [J]. Journal of the Optical Society of America B, 2015, 32: 407-411.

    [56] Li Y, Zhou Z Y, Ding D S, et al. Dynamic mode evolution and phase transition of twisted light in nonlinear process [J]. Journal of Modern Optics, 2016, 63: 2271-2278.

    [57] Ge Z, Zhou Z Y, Li Y, et al. Fourth-harmonic generation of orbital angular momentum light with cascaded quasi-phase matching crystals [J]. Optics Letters, 2021, 46(2): 158-161.

    [58] Fang X, Yang G, Wei D, et al. Coupled orbital angular momentum conversions in a quasi-periodically poled LiTaO3 crystal [J]. Optics Letters, 2016, 41(6): 1169-1172.

    [59] Wu Y, Ni R, Xu Z, et al. Tunable third harmonic generation of vortex beams in an optical super lattice [J]. Optics Express, 2017, 25(25): 30820-30826.

    [60] Fang X, Kuang Z, Chen P, et al. Examining second-harmonic generation of high-order Laguerre-Gaussian modes through a single cylindrical lens [J]. Optics Letters, 2017, 42(21): 4387-4390.

    [61] Tang R, Li X, Wu W, et al. High efficiency frequency upconversion of photons carrying orbital angular momentum for a quantum information interface [J]. Optics Express, 2015, 23(8): 9796-9802.

    [62] Yang C, Zhou Z Y, Li Y, et al. Nonlinear frequency conversion and manipulation of vector beams in a Sagnac loop [J]. Optics Letters, 2019, 44(2): 219-222.

    [63] Li H, Liu H, Chen X. Nonlinear frequency conversion of vectorial optical fields with a Mach-Zehnder interferometer [J]. Applied Physics Letters, 2019, 114: 241901.

    [64] Wu H J, Zhou Z Y, Gao W, et al. Dynamic tomography of the spin-orbit coupling in nonlinear optics [J]. Physical Review A, 2019, 99: 023830.

    [65] Wu H J, Zhao B, Rosales-Guzmán C, et al. Spatial-polarization-independent parametric up-conversion of vectorially structured light [J]. Physical Review Applied, 2020, 13: 064041.

    [66] Ren Z C, Lou Y C, Cheng Z M, et al. Optical frequency conversion of light with maintaining polarization and orbital angular momentum [J]. Optics Letters, 2021, 46(10): 2300-2303.

    [67] Liu H, Li H, Zheng Y, et al. Nonlinear frequency conversion and manipulation of vector beams [J]. Optics Letters, 2018, 43(24): 5981-5984.

    [68] Li H, Liu H, Yang Y, et al. Ultraviolet waveband vector beams generation assisted by the nonlinear frequency conversion [J]. Applied Physics Letters, 2021, 119: 011104.

    [69] Li H, Liu H, Chen X. Dual waveband generator of perfect vector beams [J]. Photonics Research, 2019, 7(11): 1340-1344.

    [70] Zhou Z Y, Li Y, Ding D S, et al. Highly efficient second harmonic generation of a light carrying orbital angular momentum in an external cavity [J]. Optics Express, 2014, 22: 23673-23678.

    [71] Zhou Z Y, Li Y, Ding D S, et al. Orbital angular momentum photonic quantum interface [J]. Light: Science & Applications, 2016, 5: e16019.

    [72] Zhou Z Y, Liu S L, Li Y, et al. Orbital angular momentum-entanglement frequency transducer [J]. Physical Review Letters, 2016, 117: 103601.

    [73] Liu S L, Liu S K, Li Y H, et al. Coherent frequency bridge between visible and telecommunications band for vortex light [J]. Optics Express, 2017, 25: 24290-24298.

    [74] Li Y, Zhou Z Y, Liu S L, et al. Frequency doubling of twisted light independent of the integer topological charge [J]. OSA Continuum, 2019, 2(2): 470-477.

    [75] Liu S, Yang C, Xu Z, et al. High-dimensional quantum frequency converter [J]. Physical Review A, 2020, 101: 012339.

    [76] Dada A C, Leach J, Buller G S, et al. Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities [J]. Nature Physics, 2011, 7: 677.

    [77] Malik M, Erhard M, Huber M, et al. Multi-photon entanglement in high dimensions [J]. Nature Photonics, 2016, 10: 248.

    [78] Yao A M. Angular momentum decomposition of entangled photons with an arbitrary pump [J]. New Journal of Physics, 2011, 13: 053048.

    [79] Zhou Z Y, Li Y, Ding D S, et al. Classical to quantum optical network link for orbital angular momentum-carrying light [J]. Optics Express, 2015, 23(14): 18435-18444.

    [80] Liu S, Zhou Z, Liu S, et al. Coherent manipulation of a three-dimensional maximally entangled state [J]. Physical Review A, 2018, 98: 062316.

    [81] Kovlakov E V, Straupe S S, Kulik S P. Quantum state engineering with twisted photons via adaptive shaping of the pump beam [J]. Physical Review A, 2018, 98: 060301.

    [82] Liu S, Zhang Y, Yang C, et al. Increasing two-photon entangled dimensions by shaping input-beam profiles [J]. Physical Review A, 2020, 101: 052324.

    [83] Chong A, Wan C, Chen J, et al. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum [J]. Nature Photonics, 2020, 14: 350-354.

    [84] Gui G, Brooks N J, Kapteyn H C, et al. Second-harmonic generation and the conservation of spatiotemporal orbital angular momentum of light [J]. Nature Photonics, 2021, 15: 608-613.

    [85] Tang Y, Li K, Zhang X, et al. Harmonic spin-orbit angular momentum cascade in nonlinear optical crystals [J]. Nature Photonics, 2020, 14: 658-662.

    [86] Chen P, Ma L L, Duan W, et al. Digitalizing self-assembled chiral superstructures for optical vortex processing [J]. Advanced Materials, 2018, 30: 1705865.

    [87] Qiu X, Li F, Liu H, et al. Optical vortex copier and regenerator in the Fourier domain [J]. Photonics Research, 2018, 6(6): 641-646.

    [88] Wei D, Guo J, Fang X, et al. Multiple generations of high-order orbital angular momentum modes through cascaded third-harmonic generation in a 2D nonlinear photonic crystal [J]. Optics Express, 2017, 25(10): 11556-11563.

    [89] Wei D, Wang C, Wang H, et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal [J]. Nature Photonics, 2018, 12: 596-600.

    [90] Wei D, Wang C, Xu X, et al. Efficient nonlinear beam shaping in three-dimensional lithium niobate nonlinear photonic crystals [J]. Nature Communications, 2019, 10: 4193.

    [91] Chen P, Wang C, Wei D, et al. Quasi-phase-matching-division multiplexing holography in a three-dimensional nonlinear photonic crystal [J]. Light: Science & Applications, 2021, 10: 146.

    [92] Chen R, Ni R, Wu Y, et al. Phase-matching controlled orbital angular momentum conversion in periodically poled crystals [J]. Physical Review Letters, 2020, 125: 143901.

    [93] Hu X, Zhang Y, Zhu S. Nonlinear beam shaping in domain engineered ferroelectric crystals [J]. Advanced Materials, 2020, 32: e1903775.

    [94] Sain B, Meier C, Zentgraf T. Nonlinear optics in all-dielectric nanoantennas and metasurfaces: A review [J]. Advanced Photonics, 2019, 1(2): 024002.

    [95] Rego L, Dorney K M, Brooks N J, et al. Generation of extreme-ultraviolet beams with time-varying orbital angular momentum [J]. Science, 2019, 364: 1253.

    [96] Gauthier D, Rebernik R P, Adhikary G, et al. Tunable orbital angular momentumin high-harmonic generation [J]. Nature Communications, 2017, 8: 1497.

    [97] Niu S, Wang S, Ababaike M, et al. Tunable near- and mid-infrared (1.36-1.63 μm and 3.07-4.81 μm) optical vortex laser source [J]. Laser Physics Letters, 2020, 17: 045402.

    [98] Aadhi A, Sharma V, Singh R P, et al. Continuous-wave, singly resonant parametric oscillator-based mid-infrared optical vortex source [J]. Optics Letters, 2017, 42(18): 3674-3677.

    [99] Araki S, Ando K, Miyamoto K, et al. Ultra-widely tunable mid-infrared (6-18 μm) optical vortex source [J]. Applied Optics, 2018, 57(4): 620-624.

    ZHOU Zhiyuan, SHI Baosen. Recent progress on frequency conversion of orbital angular momentum carrying light[J]. Chinese Journal of Quantum Electronics, 2022, 39(1): 32
    Download Citation