• Chinese Journal of Lasers
  • Vol. 50, Issue 11, 1101014 (2023)
Long Pan and Xiaohua Feng*
Author Affiliations
  • Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou 311121, Zhejiang, China
  • show less
    DOI: 10.3788/CJL230574 Cite this Article Set citation alerts
    Long Pan, Xiaohua Feng. Snapshot Three-Dimensional Imaging of Superluminal Motion of Pulsed Lasers with Light Field Tomography[J]. Chinese Journal of Lasers, 2023, 50(11): 1101014 Copy Citation Text show less
    References

    [1] Sidorenko P, Lahav O, Avnat Z et al. Ptychographic reconstruction algorithm for frequency-resolved optical gating: super-resolution and supreme robustness[J]. Optica, 3, 1320-1330(2016).

    [2] Iaconis C, Walmsley I A. Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses[J]. Optics Letters, 23, 792-794(1998).

    [3] Guo Y K, Wen X X, Lin W et al. Real-time multispeckle spectral-temporal measurement unveils the complexity of spatiotemporal solitons[J]. Nature Communications, 12, 67(2021).

    [4] Wang W Q, Wang L R, Zhang W F. Advances in soliton microcomb generation[J]. Advanced Photonics, 2, 034001(2020).

    [5] Gao L, Liang J Y, Li C Y et al. Single-shot compressed ultrafast photography at one hundred billion frames per second[J]. Nature, 516, 74-77(2014).

    [6] Feng X H, Gao L. Ultrafast light field tomography for snapshot transient and non-line-of-sight imaging[J]. Nature Communications, 12, 2179(2021).

    [7] Nakagawa K, Iwasaki A, Oishi Y et al. Sequentially timed all-optical mapping photography (STAMP)[J]. Nature Photonics, 8, 695-700(2014).

    [8] Goda K, Tsia K K, Jalali B. Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena[J]. Nature, 458, 1145-1149(2009).

    [9] Liang J Y, Zhu L R, Wang L V. Single-shot real-time femtosecond imaging of temporal focusing[J]. Light: Science & Applications, 7, 42(2018).

    [10] Morimoto K, Wu M L, Ardelean A et al. Superluminal motion-assisted four-dimensional light-in-flight imaging[J]. Physical Review X, 11, 011005(2021).

    [11] Bishop T E, Favaro P. The light field camera: extended depth of field, aliasing, and superresolution[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34, 972-986(2012).

    [12] Pan X C, Sidky E Y, Vannier M. Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?[J]. Inverse Problems, 25, 123009(2009).

    [13] Dittmer S, Kluth T, Maass P et al. Regularization by architecture: a deep prior approach for inverse problems[J]. Journal of Mathematical Imaging and Vision, 62, 456-470(2020).

    [14] Kamilov U S, Mansour H, Wohlberg B. A plug-and-play priors approach for solving nonlinear imaging inverse problems[J]. IEEE Signal Processing Letters, 24, 1872-1876(2017).

    [15] Moeller M, Benning M, Schönlieb C et al. Variational depth from focus reconstruction[J]. IEEE Transactions on Image Processing, 24, 5369-5378(2015).

    [16] Dabov K, Foi A, Katkovnik V et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 16, 2080-2095(2007).

    [17] Selvin S, Ajay S G, Gowri B G et al. ℓ1 trend filter for image denoising[J]. Procedia Computer Science, 93, 495-502(2016).

    [18] Bruschini C, Homulle H, Antolovic I M et al. Single-photon avalanche diode imagers in biophotonics: review and outlook[J]. Light: Science & Applications, 8, 87(2019).

    [19] Gupta M, Jauhari A, Kulkarni K et al. Compressive light field reconstructions using deep learning[C], 1277-1286(2017).

    Long Pan, Xiaohua Feng. Snapshot Three-Dimensional Imaging of Superluminal Motion of Pulsed Lasers with Light Field Tomography[J]. Chinese Journal of Lasers, 2023, 50(11): 1101014
    Download Citation